Instructor

Professor Robert Full
5128 VLSB
Office hours: Monday & Wednesday 1:00-2:00 PM
Phone: 510-642-9896; e-mail: rjfull@berkeley.edu

GSIs
Marc Badger
Office hours: TBA, 1099 VLSB
e-mail: badger@berkeley.edu; phone: 801-814-2728
Nate Hunt
Office hours: TBA, 1099 VLSB
e-mail: nathaniel.hunt@berkeley.edu; phone: 510-643-5183

Prerequisites: None. Open to all students.

bCourses Site:
We will use the IB 32 bCourses site for the syllabus, reading assignments, announcements, presentations and lecture material. You may access the site by going to:
https://bcourses.berkeley.edu, login through CalNet and then to Integbi 32

Meeting time and place: Monday & Wednesday. 2060 VLSB. 12:00PM - 1:00PM

Discussion sections:
One hour per week
INTEGRATIVE BIOLOGY 32 S 101 DIS; 42151; Fr 11-12P, 220 Jacobs Hall
INTEGRATIVE BIOLOGY 32 S 101 DIS; 42154; Fr 12-1P, 220 Jacobs Hall
INTEGRATIVE BIOLOGY 32 S 101 DIS; 42157; Fr 1-2P, 220 Jacobs Hall
INTEGRATIVE BIOLOGY 32 S 101 DIS; 42160; Fr 2-3P, 220 Jacobs Hall

Rationale: Bioinspired design views the process of how we learn from Nature as an innovation strategy translating principles of function, performance and aesthetics from biology to human technology. The creative design process is driven by interdisciplinary exchange among engineering, biology, medicine, art, architecture and business. Diverse teams of students will collaborate on, create, and present original bioinspired design projects in our new Design Innovation Institute in Jacobs Hall. Lectures will address the biomimicry design process from original scientific breakthroughs to entrepreneurial start-ups using cases studies that include gecko-inspired adhesives, robots that run, fly and swim, artificial muscles, computer animation, medical devices and prosthetics while highlighting health, the environment, and safety.

Connections: Before every class, design teams will add a Connection Link to the Discussion Board in bCourses to share Bioinspired Design connections. These URLs can include relevant design or biology courses on campus; links to campus organizations, clubs, institutes and competitions interested in design; biological discoveries and bioinspired designs from news and journals, and; global research, centers, and institutes.
Bioinspired Design Projects: Three bioinspired design opportunities will be offered.

1. Create a Gecko-inspired adhesive. In the first session, teams will manufacture a gecko inspired adhesive and analyze the adhesive. In the second design session, teams will use their gecko-inspired adhesive as a design tool to propose a new product.

2. Build a Legged Robot. In the first session, teams will construct a legged robot provided by DASH Robotics. In the second design session, teams will use their robot as a design tool to propose a new product.

3. Novel Bioinspired Design. The final exam will be a 5 min video of a bioinspired design of your team’s choice. Team will select a journal publication with a biological discovery and extract the principle. Teams will then create a mock-up, prototype, and/or computer simulation/animation in combination with the setting in which your design is to be used. Designs should include possible societal impacts (health, fitness, environment, safety, security, education, connections to others or community, assisting underserved, disabled populations or underdeveloped countries, sports and entertainment). Resources from Jacobs Hall will be available. The video must be posted to the assignment page in bCourses by 5PM on May 1. (You will NOT have a written exam during the May 11 slot.)

Grading
Your grade will be determined by:
10%: Connection links submitted by teams (Points for web surfing!)
25%: Midterm (In-class multiple choice based on lecture and readings)
5%: Discussion Section Assignments (Decompose two research papers)
15%: Design Project #1 Gecko-inspired adhesive design
15%: Design Project #2 Design legged robot (DASH)
30%: Final Project (5 min team video)

Disabled Students
Disabled students please get a letter from the Disabled Students Program and present this letter to the instructors at least 2 weeks in advance of the exam so that appropriate accommodations can be made. See http://dsp.berkeley.edu
Integrative Biology 32

TENTATIVE COURSE SCHEDULE, Spring 2016

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture (2060 VLSB)</th>
<th>Discussion (220 Jacobs Hall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 January</td>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>22 January</td>
<td>2. BioDiscovery - How to discover</td>
<td>Introduction & orientation; Literature searching; Assign Gecko paper #1</td>
</tr>
<tr>
<td></td>
<td>Nature’s principles?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from Nature?</td>
<td></td>
</tr>
<tr>
<td>27 January</td>
<td></td>
<td>Understanding scientific publications; Assign Gecko paper #2</td>
</tr>
<tr>
<td>29 January</td>
<td>4. BioConstraints - How are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nature’s designs compromised?</td>
<td></td>
</tr>
<tr>
<td>1 February</td>
<td>5. BioScaling - How do I consider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the best inspiration?</td>
<td>publication and do Decomposition and Check.</td>
</tr>
<tr>
<td>5 February</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 February</td>
<td>7. BioComplexity - How to simplify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& extract principles?</td>
<td></td>
</tr>
<tr>
<td>10 February</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 February</td>
<td></td>
<td>Review Assignment #2 and assist with Assignment #3</td>
</tr>
<tr>
<td>15 February</td>
<td>Holiday</td>
<td></td>
</tr>
<tr>
<td>17 February</td>
<td>8. BioAdhesion</td>
<td></td>
</tr>
<tr>
<td>19 February</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 February</td>
<td>10. Midterm</td>
<td></td>
</tr>
<tr>
<td>26 February</td>
<td></td>
<td>Geckoadhesive design project 1</td>
</tr>
<tr>
<td>29 February</td>
<td>11. BioMotion-Walk</td>
<td></td>
</tr>
<tr>
<td>2 March</td>
<td>12. BioMotion-Running</td>
<td></td>
</tr>
<tr>
<td>4 March</td>
<td></td>
<td>Geckoadhesive design project 2</td>
</tr>
<tr>
<td>7 March</td>
<td>13. BioControl</td>
<td></td>
</tr>
<tr>
<td>11 March</td>
<td></td>
<td>DASH robot design project 1</td>
</tr>
<tr>
<td>14 March</td>
<td>15. BioPower</td>
<td></td>
</tr>
<tr>
<td>16 March</td>
<td>16. BioPower-Artificial Devices</td>
<td></td>
</tr>
<tr>
<td>18 March</td>
<td></td>
<td>DASH robot design project 2</td>
</tr>
<tr>
<td>21 March</td>
<td>Spring Vacation</td>
<td></td>
</tr>
<tr>
<td>23 March</td>
<td>Spring Vacation</td>
<td></td>
</tr>
<tr>
<td>28 March</td>
<td>17. BioMaterials</td>
<td></td>
</tr>
<tr>
<td>30 March</td>
<td>18. BioSupport - Skeletons</td>
<td></td>
</tr>
<tr>
<td>1 April</td>
<td></td>
<td>Paper selection for final project</td>
</tr>
<tr>
<td>4 April</td>
<td>19. BioTransport - Pumps</td>
<td></td>
</tr>
<tr>
<td>6 April</td>
<td>20. BioMotion-Swim</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>8 April</td>
<td>Work on final project</td>
<td></td>
</tr>
<tr>
<td>11 April</td>
<td>21. BioMotion-Fly</td>
<td></td>
</tr>
<tr>
<td>13 April</td>
<td>22. BioAnimation</td>
<td></td>
</tr>
<tr>
<td>15 April</td>
<td>Work on final project</td>
<td></td>
</tr>
<tr>
<td>18 April</td>
<td>23. BioEnergy</td>
<td></td>
</tr>
<tr>
<td>20 April</td>
<td>24. BioEntrepreneurship</td>
<td></td>
</tr>
<tr>
<td>22 April</td>
<td>Work on final project</td>
<td></td>
</tr>
<tr>
<td>25 April</td>
<td>25. Team Project Preparation</td>
<td></td>
</tr>
<tr>
<td>27 April</td>
<td>26. Summary</td>
<td></td>
</tr>
<tr>
<td>1 May</td>
<td>Submit final video project</td>
<td></td>
</tr>
</tbody>
</table>