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Introduction
Running by legged arthropods is well modeled as a spring-

mass system in both the sagittal and horizontal plane (Blickhan
and Full, 1987; Full and Tu, 1990; Full and Tu, 1991; Schmitt
and Holmes, 2000a; Schmitt and Holmes, 2000b). Three or
four legs sum to function as a single, virtual leg-spring,
appearing to bounce the animal’s center of mass forward
(Blickhan and Full, 1993). However, direct evidence of spring-
like function in arthropod legs during rapid running is lacking.
Arthropods rely on energy storage and power amplification by
elastic structures during flight, sound generation, jumping and
predatory strikes (for a review, see Gronenberg, 1996). Insect
flight might be impossible in the absence of elastic structures
that reside in the thoracic cuticle, resilin pads and the flight
muscles themselves (Ellington, 1984; Weisfogh, 1973).
Jumping locusts store energy in passive skeletal elements that
include the bending of their tibial leg segment, the compression
of elastomeric structures and the stretching of extensor tendons
or apodemes (Bennet-Clark, 1975; Katz and Gosline, 1992).
The legs of arthropods, such as locusts and spiders, have been
shown to be highly resilient, storing and returning as much as
90% of the energy invested to deflect them (Blickhan, 1986;
Katz and Gosline, 1992; Sensenig and Shultz, 2003). Dynamic
oscillations of legs within the range of displacements and
frequencies observed during running are needed to search for
spring-like behavior.

In the present study, we determine the passive mechanical
properties of the cockroach leg and examine the role they
might play in managing energy during running. The deathhead
cockroach, Blaberus discoidalis, has the dynamics of a spring-
mass system during running, but the presence and location of
spring-like elements remain a mystery (Blickhan and Full,
1993; Full and Tu, 1990). We selected cockroaches to simplify
our search, because their legs have more vertically oriented
joint axes such that a vertical displacement of a leg results in
passive deflection of the exoskeleton rather than rotation of
flexible joints under muscle control. Since the leg cuticle in
other terrestrial insects is more than 90% resilient (Blickhan,
1986; Katz and Gosline, 1992; Sensenig and Shultz, 2003), we
hypothesized that during running the leg acts as an energy-
storing spring. Rapidly running cockroaches, cycling their legs
at high frequencies, have little time to react to perturbations
and yet these insects appear to absorb energy effectively and
self-stabilize when perturbed. Jindrich and Full found that
these cockroaches do not even require step transitions to
recover from lateral perturbations caused by force impulses as
high as 80% of forward running momentum (Jindrich and Full,
2002). Given their remarkable stability, we also hypothesize
that legs act as energy-absorbing dampers, passively removing
energy from perturbations, potentially simplifying control. By
directly oscillating legs as we measured force, we tested
whether an arthropod leg during running operates as a visco-

While the dynamics of running arthropods have been
modeled as a spring-mass system, no such structures have
been discovered that store and return energy during
bouncing. The hindleg of the cockroach Blaberus
discoidalis is a good candidate for a passive, vertical leg
spring because its vertically oriented joint axes of rotation
limit the possibility of active movements and contributions
of muscle properties. We oscillated passive legs while
measuring force to determine the leg’s dynamic,
mechanical properties. The relative dimensionless stiffness
of an individual cockroach leg was equal to that estimated
for a single leg of a biped or quadruped. Leg resilience
ranged from 60 to 75%, affording the possibility that the
leg could function as a spring to store and return the

mechanical energy required to lift and accelerate the
center of mass. Because hysteresis was independent of
oscillation frequency, we rejected the use of a Voigt model
– a simple spring in parallel with a viscous damper. A
hysteretic damping model fit the cockroach leg
force–displacement data over a wide range of frequencies
and displacement using just two parameters. Rather than
simply acting as a spring to minimize energy, we
hypothesize that legs must manage both energy storage
and absorption for rapid running to be most effective.
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elastic structure represented by a simple spring in parallel with
a viscous damper – often referred to as a Voigt model.

Materials and methods
Animals

Adult deathhead cockroaches (Blaberus discoidalis L.) of
both sexes were obtained from Carolina Biological Supply
(Gladstone, OR, USA) and used for all experiments
(3.08±0.73·g, N=12 animals). Animals were housed in large
plastic containers and fed dried dog food and water ad libitum.
All cockroaches were euthanized immediately prior to an
experiment in a 237-ml jar saturated with ethyl acetate vapor.
Experiments were performed at room temperature (24°C).

Dynamic oscillations

Dynamic oscillations of the meta-thoracic limbs of
cockroaches were performed to quantify their viscoelastic
properties. Oscillations were performed on legs using two

distinct preparations: one in which the body–coxa joint was
rigidly fixed and another where the body–coxa joint was free
to rotate. This was done in an attempt to bound the possible
material properties of the leg from zero muscle activation (free-
coxa) to infinitely stiff muscles (fixed-coxa). Since the joint
axes of the more distal joints are oriented nearly vertical
(Fig.·1A,B), muscle activation should have minimal effect on
material properties during vertical oscillations.

In the fixed-coxa preparation (Fig.·1C), the ablated, meta-
thoracic limb was affixed using epoxy resin to 0.95·cm-thick
Plexiglas such that the trochanter, femur and tibia were free
to rotate. Legs (N=7 animals, n=13 legs) were cut as
proximally as possible in the unsclerotized region of the
body–coxa joint using fine dissecting scissors and the tarsus
was removed. No hemolymph loss was observed from either
end of the leg. One end of a stainless steel pin (0.33·mm o.d.)
was inserted into the distal tip of the tibia and secured with
cyanoacrylate. The other end of the pin was attached to the
arm of a servo-motor (300B-LR; Aurora Scientific, Aurora,
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Fig.·1. The distal end of the tibia was attached to the arm of a servo-motor via a stainless steel pin. In both preparations, the angle between the
steel pin and tibia was 110° because the body–coxa joint is held at a constant 20° during locomotion (Kram et al., 1997). The hindlimb was
chosen due to its vertically oriented joint axes, where vertical deflections of the leg are absorbed by either the body–coxa joint or passive deflection
of the exoskeleton. The servo-motor input sinusoidal oscillations from 0.01 to 100·Hz and 0.1 to 1.0·mm and recorded the induced forces.
(A) Ventral view of the joint axes of rotation in the meta-thoracic leg. (B) Sagittal view of the joint axes of rotation in the meta-thoracic leg.
(C) In the fixed-coxa preparation, the leg was removed and affixed with epoxy resin to 0.95·cm-thick Plexiglas. The tarsus (gray broken line)
was removed. (D) In the free-coxa preparation, the cockroach was tethered to a bronze rod via the metanotum. These two preparations were
chosen to bound the effect muscle activation at the body–coxa joint could have on leg properties. The tarsus (gray broken line) was removed.
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ON, Canada) using dental compound (Kerr; Orange, CA,
USA). The servo-motor input a time-varying displacement
while simultaneously measuring force with a resolution of
0.25·mN.

In the free-coxa preparation (Fig.·1D), the euthanized
cockroach was rigidly tethered to a bronze rod by the
metanotum. The meta-thoracic limb (N=5 animals, n=10 legs)
was attached to the arm of a servo-motor in the same manner
as the fixed preparation. In this preparation, the body–coxa
joint and all leg joints distal to it were free to rotate.

In both preparations, dynamic tests of the limb were
performed in the dorso-ventral direction with sinusoidal
displacements ranging from 0.1 to 1.0·mm at frequencies
ranging from 0.05 to 60·Hz. The tibia and the pin connecting
the limb to the servo-motor made a 110° angle relative to one
another (Fig.·1C,D). The leg was oscillated dorso-ventrally to
simulate the position of the legs and the effect of the body
mass pushing down during the mid-stance of running. It also
simulates a vertical perturbation of the leg during mid-swing.
The displacements were chosen because the center of mass
(COM) has been calculated to deflect vertically 0.3·mm during
a stride (Full and Tu, 1990). The angle was chosen because
the meta-thoracic body–coxa joint is held at a nearly constant
20° angle during the stance phase of running (Kram et al.,
1997).

Controls
Preparation

To gain the most secure and repeatable connection, the lever
was attached to the most distal portion of the tibia. Leaving the
tarsus intact resulted in a 30·min delay between euthanasia and
testing because of the need for the adhesive to dry. Removal
of the tarsus decreased preparation to 5·min. For all data
presented in this study, the tarsus of each tested leg was
removed (Fig.·1C,D). As a control, we performed tests 30·min
post-mortem without removing the tarsus. Results from legs
with tarsi were not significantly different from legs without
tarsi (P>0.05), where tests began 5·min post-mortem. Leg
properties remained unchanged for at least 3·h in both the
fixed-coxa and free-coxa preparations. Jensen and Weis-Fogh
observed water loss in ablated locust tibia at a rate of 1% per
hour, but ‘48·h of storage without protection against
evaporation had no appreciable effect upon the stress–strain
relationship’ of cuticle ribbons (Jensen and Weis-Fogh, 1962).
Therefore, if desiccation has an effect on material properties,
it either occurs entirely in the first 5·min or requires more than
3·h to be measured.

Muscle activity

To test if post-mortem reflex muscle activity was playing a
role in the legs of euthanized cockroaches, electromyograms
were recorded from three coxa depressor muscles (177c, 177d
and 179), one coxa levator (182c), one tibia extensor (194a)
and one tibia flexor (185) (following Watson and Ritzmann,
1998). No muscle activity was observed in any of the six
muscles examined.
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Hemolymph pressure

While we did not measure internal pressure directly, it did
not affect the mechanical properties of the leg. Removing the
tarsus or cutting a hole in the mesonotum, both of which
should eliminate internal leg pressure, had no significant
effect. Moreover, hemolymph pressure in the cockroach
Periplaneta americana has been shown to be only –0.005·atm
(101.325·kPa·atm–1) (Davey and Treherne, 1964). While large
fluctuations in hemolymph pressure have been observed
during digging movements in newly emerged adult flies (from
0.05·atm at rest to as high as 0.15·atm), ‘running merely
produces a slight irregularity of the (pressure) traces’
(Cottrell, 1962). To test for pressure effects, we compared
living cockroaches with euthanized cockroaches and found no
significant difference. It is possible that the thorax
depressurizes post-mortem, but the leg properties of living,
recently actively struggling cockroaches were not different
from those of living, calmly standing cockroaches.

Data acquisition and parameter calculations

Displacement and force signals from the servo-motor were
digitized (board AT-MIO-16E-1; National Instruments,
Austin, TX, USA) at sampling rates dependent on oscillation
frequency and stored to the hard disk of a personal computer
(Berta, Transduction Ltd, Mississauga, ON, Canada) running
analysis software (MATLAB, The MathWorks, Natick, MA,
USA).

Prior to any calculations, raw force and displacement
signals were filtered using a 4th-order low-pass Butterworth
filter at one-quarter the peak cutoff frequency for each trial.
Peak cutoff frequency varied from trial to trial because
oscillation frequency and sampling rate varied. For example,
when sampling at 4000·Hz, the peak cutoff frequency to
prevent aliasing is 2000·Hz, and one-quarter the peak cutoff
frequency is 500·Hz. The maximum allowed frequency of the
filter was never less than eight times the oscillation
frequency. Visual inspection of the pre- and post-filtered
power spectra did not reveal any noticeable structures outside
the allowed frequency band. At low frequencies, spectral
artifacts due to the intermittent movement of the lever
arm were observed and removed by this filter. All
calculations were performed using a mathematics program
(MATLAB).

Impedance

Mechanical impedance (Z) or total dynamic stiffness
(Wainwright et al., 1976) is the ratio of the greatest magnitude
of a sinusoidally varying force to the greatest magnitude of a
displacement. It has both a static component related to
displacement and a dynamic component related to velocity and
acceleration. Here, it represents the time-varying resistance of
the limb to deformation and was calculated as:

Z = (Fmax – Fmin) / (xmax – xmin)·, (1)

where F is the force induced and x is the displacement
measured per oscillation.
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Phase shift

Phase shift (�) for a paired force–displacement response is
here defined as the angle between the maximum force and the
maximum displacement. A measure of internal resistance
(damping) is provided by tan(�). We determined phase shift by
dividing the time lag (t) between force and displacement peaks
by the period of oscillation (T):

� = t / 2�T·. (2)

Resilience

Resilience (R) is the ratio of the energy recovered elastically
to the energy input to the limb in each oscillation:

R = (Eload – Elost) / Eload·, (3)

where Eload is the loading energy (area under the loading curve
of the hysteresis loop) and Elost is the energy lost per cycle, or
hysteresis (area inside the hysteresis loop).

Modeling leg properties

Any model of the dynamic behavior of biomaterials must
take into account both the in-phase (storage) and out-of-phase
(loss) components of the induced force response. The most
common approach taken in biology is to use a complex
modulus (Wainwright et al., 1976), where the resultant stress
(force per unit area), �, of a material oscillated through a strain
(normalized displacement), �, is:

� = E*(�)�·, (4)

where E* is the complex modulus as a function of oscillation
frequency, �. To determine the in-phase and out-of-phase
contributions, E* can be broken into storage (E�) and loss (E�)
moduli:

E* = E� + iE�·, (5)

(i=��––
–1) and the phase shift is usually presented as its tangent:

tan(�) = E�/E�·. (6)

Resilience can be calculated from tan(�) using:

R = [e–tan(�)] 100·. (7)

The expectation of how E�, E� and R vary with frequency
depends on the viscoelastic model chosen to represent the
material. While these models have traditionally been used to
characterize the stress and strain relationships of isolated
samples of biomaterials (Wainwright et al., 1976), we consider
the leg as a structure that depends on forces (F) and
displacements (x) and model it as a one-dimensional point
mass.

Viscous damping model – Voigt model

The most common viscoelastic models used in biology
assume combinations of linear springs and viscous dampers
(Vincent, 1990; Wainwright et al., 1976). We modeled the leg
as a linear spring in parallel with a viscous damper (commonly
referred to as the Voigt model), where:

F = mx + cx + kvx·, (8)

where velocity (x) and acceleration (x) are the first and second
time derivatives of x. We did not include the inertial term in
our analysis because it accounted for less than 5% of the force
below 25·Hz. We calculated stiffness (kv) and damping (c)
coefficients by entering F(t), x(t) and x(t) from oscillation trials
into Eqn·8 and using a least squares minimization technique to
find the best fit for kv and c. When neglecting the inertial term
in the Voigt model, E�=kv, E�=c�, tan(�)=c�kv

–1 and R	�–1.

Hysteretic damping model

Because of the lack of fit to a Voigt model, we calculated
stiffness (kh) and structural damping factor (
) by fitting the
force–displacement data to the hysteretic damping model
(Nashif et al., 1985). The hysteretic damping model is also a
linear model, but the damping is assumed to be structural
instead of viscous. Rather than having a velocity-dependent
damping term, both stiffness and damping are proportional to
displacement where:

F = mx + (1 + i
)khx·, (9)

where m is the mass of the leg and x is the acceleration of the
leg. In this case (and neglecting inertia), E�=kh, E�=kh
,
tan(�)=
 and R is independent of oscillation frequency.

The hindlimb underwent a sinusoidal displacement
oscillation of:

x = A cos (�t) = Re (Aei�t)·, (10)

where A is amplitude, t is time and RE indicates the real
component. Replacing x in Eqn·9 with Eqn·10 and taking the
real parts predicts that the resultant force in the leg as a
function of time will be:

F(t) = A [(kh – �2m) cos (�t) – 
kh sin (�t)]·. (11)

Stiffness and damping coefficients of the leg were determined
by entering F(t), A, m and � from oscillation trials into Eqn·11
and using a least-squares minimization technique to find the
best fit for kh and 
.

Statistical analysis

Both the left and right limbs were used from each animal
tested. One-way analyses of variance (ANCOVAs) (separate
slopes model) were performed to examine the relationship of
the mechanical properties to the oscillation frequency. Data
for the ANCOVAs were grouped by coxa preparation,
amplitude of imposed displacement and, initially, left or right
leg. Visual inspection showed that there was a break in the
data at 25·Hz, with most properties increasing as a function of
frequency up until 25·Hz and then remaining constant or
decreasing as frequency increased further. Therefore,
ANCOVAs were performed on two separate frequency
ranges, 0.05–25·Hz and 25–60·Hz. Reported intercepts
correspond to a frequency of 1·Hz because the ANCOVAs
were performed on log10-transformed frequencies. All tests
were performed using statistics software packages (JMP; SAS
Institute, Cary, NC, USA; Statistics toolbox; The
MathWorks). Unless otherwise stated, all reported values are
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means ± standard errors (fixed-coxa, n=13·legs;
free-coxa, n=10·legs).

Results
For each leg preparation, the left and right

hindlimbs were tested with 85 treatments each for
a total of 12 animals, 23 legs and 1955 tests.
Tukey-Kramer post-hoc tests revealed that there
was no significant difference in the mechanical
properties of the left and right legs. Therefore, data
from the left and right legs of each preparation
were pooled for data analysis. Visual inspection revealed
that the variance of the data for each individual was similar,
so equal variances were assumed.

Induced forces

For all but the smallest amplitude displacement (0.1·mm),
the resulting hysteresis loops were nonlinear (Fig.·2). The
effect of increasing oscillation frequency on absolute forces
was marginally significant, with induced force increasing less
than 1·mN in most cases per decade increase of frequency from
0.05 to 25·Hz. Induced forces remained constant at frequencies
from 25 to 60·Hz. Frequency did not have an effect on the
shape of the hysteresis loops (Fig.·2). As displacement
amplitude increased, the induced forces increased (ANCOVA
with Tukey-Kramer honestly significant difference post-hoc
test) and the loops became increasingly non-linear (Fig.·2C,D).
At the same oscillation frequency and amplitude, induced
forces were 50% (0.1·mm amplitude) to 65% (1.0·mm
amplitude) lower (ANCOVA, Tukey-Kramer) for a leg with a
freely rotating coxa when compared with a rigidly fixed leg.
The percent difference between the two preparations was not
a constant because the slopes of the regressions were
significantly lower (ANCOVA, Tukey-Kramer) for the free-
coxa preparation.

Average peak force ranged from 2.4±0.1·mN (0.1·mm at
0.25·Hz) to 21.9±2.2·mN (1.0·mm at 40·Hz) in the fixed-coxa
leg. Forces of the free leg ranged from 1.2±0.1·mN (0.1·mm at
0.25·Hz) to 7.8±0.9·mN (1.0·mm at 40·Hz). By comparison,
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the vertical ground reaction force produced by the hindlimb
during running is 11.9±0.9·mN (Full et al., 1991).

Impedance

Fixed-coxa leg impedance increased significantly as
oscillation frequency increased from 0.05 to 25·Hz (Table·1)
and declined slightly from 25 to 60·Hz (Fig.·3A). Increases in
free-coxa leg impedance as a function of frequency (Fig.·3B)
were significantly less pronounced (ANCOVA, Tukey-Kramer
post-hoc test on slopes) than in the fixed-coxa preparation. For
fixed-coxa legs, impedance was significantly greater for
0.1·mm oscillations than for the larger amplitudes (ANCOVA,
Tukey-Kramer), with no significant difference for oscillations
ranging from 0.3 to 1.0·mm. Free-coxa legs also had
significantly higher impedance at low amplitude, but the
intercepts continued to decrease as amplitude increased
(Table·1). At the same oscillation frequency and amplitude,
impedance was 50% (0.1·mm amplitude) to 65% (1.0·mm
amplitude) lower (ANCOVA, Tukey-Kramer on intercepts) for
a leg with a freely rotating coxa when compared with a rigidly
fixed leg.

Phase shift

For both fixed- and free-coxa legs, the induced force reached
a maximum prior to the maximum displacement, resulting in
a phase shift, �, between the force and displacement signals
(Fig.·4A,B). There was no significant relationship between
tan(�) and oscillation frequency (ANCOVA, Tukey-Kramer).
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Fig.·2. Leg force as a function of displacement amplitude
and oscillation frequency (blue line, 0.25·Hz; green line,
12·Hz; red line, 40·Hz). (A) Fixed coxa with small-
amplitude oscillations (0.1·mm shown) resulted in nearly
linear hysteresis loops. (B) Free coxa with small-amplitude
oscillations (0.1·mm shown) showing near-linear
hysteresis loops. (C) Fixed-coxa oscillations with large
amplitudes exceeding 0.3·mm (1.0·mm shown) resulted in
hysteresis loops with pronounced non-linearities. (D) Free-
coxa oscillations with large amplitudes exceeding 0.3·mm
showing non-linearities. The relatively larger areas of the
loops in the free-coxa preparation (B,D) compared with the
fixed-coxa legs (A,C) show the decreased resilience of a
leg with a freely rotating coxa.
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Within the fixed- and free-coxa treatments, only the 0.1·mm
amplitude oscillations had significantly different intercepts
from the larger (0.3–1.0·mm) amplitude oscillations (Table·1;
Fig.·4C,D). At the same oscillation frequency and amplitude,
tan(�) was the same at 0.1·mm amplitudes to 40% larger at
1.0·mm amplitudes (ANCOVA, Tukey-Kramer) in the free-
coxa preparation compared with the fixed-coxa preparation.

Energy storage, return and lost

The work performed during each loading (Eload) and

unloading cycle (Eunload) (see Fig.·4B) increased significantly,
but only by a small percentage, with oscillation frequency from
0.05 to 25·Hz (Table·2; Fig.·5A,B). For both fixed- and free-
coxa legs, energy expended per cycle increased significantly as
oscillation amplitude increased (ANCOVA, Tukey-Kramer on
intercepts). At the same oscillation frequency and amplitude,
the loading and unloading (Table·2) energies in the free-coxa
leg were 45% (0.1·mm amplitude) to 70% (1.0·mm amplitude)
less (ANCOVA, Tukey-Kramer on intercepts) than the loading
energies in the fixed-coxa leg.

For legs with a fixed coxa, the energy
lost (Elost) during each cycle actually
decreased as oscillation frequency
increased from 0.05 to 25·Hz (Table·2;
Fig.·5E). However, this decrease was
only statistically significant for 1.0·mm
amplitude oscillations. For free-coxa
legs, energy lost increased significantly,
but only by a small percentage, for
0.5–1.0·mm amplitudes, as oscillation
frequency increased (Fig.·5F). For both
leg preparations, energy lost per cycle
increased significantly as oscillation
amplitude increased (ANCOVA, Tukey-
Kramer on intercepts). At the same
oscillation frequency and amplitude, the
energy lost in the free-coxa leg was 50%
(0.1·mm amplitude) to 25% (1.0·mm
amplitude) less (ANCOVA, Tukey-
Kramer on intercepts) than the energy
lost in the fixed-coxa leg.

Table 1. One-way ANCOVA tables, separate slopes model testing the effect of oscillation amplitude on mechanical properties,
with oscillation frequency as the covariate for either a fixed- or free-coxa leg

Fixed coxa Free coxa

Variable Source d.f. F P d.f. F P

Impedance Amplitude 4 4355.4 <0.0001 4 2874.1 <0.0001
Frequency 1 6243.2 <0.0001 1 1794.0 <0.0001
Amplitude � frequency 4 163.8 <0.0001 4 83.6 <0.0001
Error 50 50

Phase shift (�) Amplitude 4 9.9 <0.0001 4 4.2 0.0051
Frequency 1 11.3 0.0015 1 17.2 0.0001
Amplitude � frequency 4 0.6 0.6803 4 0.2 0.9210
Error 50 50

Hysteretic stiffness (k) Amplitude 4 667.4 <0.0001 4 218.1 <0.0001
Frequency 1 1191.3 <0.0001 1 291.3 <0.0001
Amplitude � frequency 4 25.9 <0.0001 4 2.1 0.0958
Error 50 50

Damping factor (
) Amplitude 4 3.0 0.0295 4 1.7 0.1725
Frequency 1 2.8 0.0998 1 0.1 0.7130
Amplitude � frequency 4 0.1 0.9683 4 0.9 0.4605
Error 45 45

Frequency values were log10-transformed prior to statistical analysis.
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Fig.·3. Leg impedance as a function of frequency at amplitudes of 0.1 (circles), 0.5 (squares)
and 1.0·mm (triangles). Leg impedance increased significantly as frequency increased from
0.05 to 25·Hz. Impedance of the fixed-coxa leg (A) was significantly greater than in the free-
coxa leg (B).
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Table 2. One-way ANCOVA tables, separate slopes model testing the effect of oscillation amplitude on leg energies (�J) and
resilience, with oscillation frequency as the covariate for either a fixed- or free-coxa leg

Fixed coxa Free coxa

Variable Source d.f. F P d.f. F P

Loading energy Amplitude 4 21 915.5 <0.0001 4 20 250.1 <0.0001
Frequency 1 145.9 <0.0001 1 383.1 <0.0001
Amplitude � frequency 4 20.4 <0.0001 4 67.7 <0.0001
Error 50 50

Unloading energy Amplitude 4 17 437.5 <0.0001 4 3770.5 <0.0001
Frequency 1 341.0 <0.0001 1 58.8 <0.0001
Amplitude � frequency 4 67.6 <0.0001 4 8.8 <0.0001
Error 50 50

Energy lost Amplitude 4 1555.8 <0.0001 4 1523.7 <0.0001
Frequency 1 15.1 <0.0001 1 39.0 <0.0001
Amplitude � frequency 4 9.1 <0.0001 4 8.9 <0.0001
Error 50 50

Resilience Amplitude 4 15.2 <0.0001 4 3.5 <0.0001
Frequency 1 80.9 <0.0001 1 0.4 <0.0001
Amplitude � frequency 4 1.3 0.2993 4 0.6 0.6847
Error 50 50

Frequency values were log10-transformed prior to statistical analysis.

Fig.·4. Phase shift as a function of frequency
at amplitudes of 0.1 (circles), 0.5 (squares)
and 1.0·mm (triangles). (A) As the leg
underwent deflection (solid line), the
induced force (broken line) peak lagged
behind the maximum displacement.
(B) This phase shift, �, can be seen as the
angle between the maximum force and
displacement of the hysteresis loop. Energy
lost (Elost) or hysteresis is shown in stipples.
Energy of unloading (Eunloading) is shown as
hatched. (C) In the fixed-coxa preparation,
tan(�) remained constant as frequency
increased, and decreased as amplitude
increased. (D) In the free-coxa preparation,
tan(�) remained constant as frequency
increased, and increased as amplitude
increased.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1509Mechanical properties of cockroach legs

Resilience

For both the fixed- and free-coxa preparations, resilience did
not significantly increase with frequency, except at the largest
(1.0·mm) amplitude (Table·2; Fig.·6A,B). In both preparations,
the statistically significant slopes were small, ranging from
0.02 to 0.03. Resilience increased less than 3% per decade
increase in oscillation frequency. The free-coxa leg was
significantly less resilient than the fixed-coxa leg (ANCOVA,
Tukey-Kramer on intercepts), averaging 71.7±0.6% for the
fixed leg and 61.9±0.7% for the free leg (Fig.·6A,B).

Viscous damping model – Voigt model

The stiffness and damping parameters resulting from fitting
the Voigt model to the data depend on both the frequency and
amplitude of oscillation (Fig.·7). Legs with a fixed coxa were
stiffer and more damped than those with a freely rotating coxa.

Leg stiffness increased as oscillation frequency increased
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Fig.·5. Energy storage, returned and lost as a function of frequency at
amplitudes of 0.1 (circles), 0.5 (squares) and 1.0·mm (triangles).
(A) Loading energy in fixed coxa increased with increasing amplitude
and as oscillation frequency increased from 0.05 to 25·Hz.
(B) Loading energy in free coxa required 45–60% less energy than
the fixed leg. (C) Unloading energy in the fixed coxa increased with
increasing amplitude and as oscillation frequency increased to 25·Hz.
(D) Unloading energy in the free coxa returned 50–70% less energy
than the fixed leg. (E) Hysteresis (or lost energy) in the fixed-coxa
preparation decreased as frequency increased, but was only significant
at 1.0·mm oscillations. (F) Hysteresis in the free-coxa preparation
increased as frequency increased significantly for 0.5 and 1.0·mm
oscillations and was only about 30% less than the fixed-coxa legs.

Fig.·6. Resilience (R) as a function of frequency at amplitudes of 0.1
(circles), 0.5 (squares) and 1.0·mm (triangles). (A) Fixed-coxa
resilience was significantly greater than (B) free-coxa resilience.
(C) Using tan(�) to calculate resilience (black line and open circles)
overestimates the actual values (gray line and filled circles) and
produces an inverse dependence on frequency because the calculation
is based on a linear model. While leg data are well fit by a linear
model, the leg data are not linear, and care should be used when
applying linear calculations to any biomaterial.
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from 0.05 to 25·Hz (ANCOVA, Tukey-Kramer) but remained
nearly constant from 25 to 60·Hz. Stiffness was significantly
greater for 0.1·mm oscillations than for the larger amplitudes
(ANCOVA, Tukey-Kramer) with no significant difference for
oscillations ranging from 0.3 to 1.0·mm. At the same
oscillation frequency and amplitude, stiffness was 50% (at
0.1·mm amplitude) to 60% (1.0·mm amplitude) lower
(ANCOVA, Tukey-Kramer) for a leg with a freely rotating
coxa when compared with a rigidly fixed leg (Fig.·7A,B).

The viscous damping coefficient was not constant. The
coefficient decreased as both oscillation frequency and
amplitude increased (ANCOVA, Tukey-Kramer; Fig.·7C,D).
The damping coefficient for the free-coxa leg was 40% (at
small amplitudes) to 50% (large amplitudes) smaller than the
damping coefficient of the fixed-coxa leg.

Hysteretic damping model

For both the fixed- and free-coxa preparations, leg stiffness
increased significantly (ANCOVA, Tukey-Kramer) as
oscillation frequency increased from 0.05 to 25·Hz (Table·1;

Fig.·8A,B) and continued to increase from 25 to 60·Hz.
Stiffness was significantly greater for 0.1·mm oscillations than
for the larger amplitudes (ANCOVA, Tukey-Kramer), with no
significant difference for oscillations ranging from 0.3 to
1.0·mm. At the same oscillation frequency and amplitude,
stiffness was 50% (at 0.1·mm amplitude) to 60% (1.0·mm
amplitude) lower (ANCOVA, Tukey-Kramer) for a leg with a
freely rotating coxa when compared with a rigidly fixed leg.

The structural damping factor of both the fixed- and free-
coxa legs was independent of frequency and amplitude from
0.1 to 25·Hz (Table·1) and decreased from 40 to 60·Hz
(Fig.·8C,D). The fixed-coxa leg was significantly less damped
than the free-coxa leg (ANCOVA, Tukey-Kramer on
intercepts), averaging 0.20±0.02 for the fixed leg and
0.28±0.02 for the free leg (Fig.·8C,D).

Hysteresis loops recreated using the stiffness and damping
parameters resulting from fitting a damped spring (Eqn·11) to
the data closely matched the actual data at low (0.1–0.3·mm)
amplitudes (Fig.·9A). At the higher amplitude (0.5–1.0·mm)
displacements, the linear lumped parameter model did not

capture the nonlinearities in the leg data
(Fig.·9B); however, the model’s peak-to-
peak displacement, force and area inside
the loop were within 10% of the actual
data.

Discussion
Measured properties of cockroach

legs did not fit a commonly applied
spring-damper model but they did fit
another simple, two-parameter model
that captured the frequency
independence of the hysteresis. While
legs could function as springs during
running, the damping present led us to
suggest a view that energy management
as it relates to stability and control best
characterizes leg function rather than
energy minimization.

Impedance and stiffness

Direct measurements of leg
impedance (Fig.·3) and stiffness
(Figs·7A,B,·9A,B) were similar to the
best estimates derived from force-
platform data (Full and Tu, 1990).
Blickhan and Full calculated that one leg
of a cockroach contributed 5.3·N·m–1 to
the stiffness of the SLIP (kSLIP)
(Blickhan and Full, 1993) or 15.9·N·m–1

to the effective vertical stiffness [keffvert;
the ratio of the peak vertical force to the
peak vertical displacement of the center
of mass during the stance phase
(McMahon and Cheng, 1990)]. We
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Fig.·7. Viscous damping model stiffness and damping coefficients as a function of frequency
at amplitudes of 0.1 (circles), 0.5 (squares) and 1.0·mm (triangles). (A) Stiffness (k) of the
fixed coxa. (B) Stiffness of the free-coxa leg. (C) Viscous damping coefficient (c) of the fixed-
coxa leg decreased with oscillation frequency and amplitude. (D) Viscous damping
coefficient of the free-coxa leg also decreased with frequency and amplitude. Viscous
damping in the free-coxa leg was 40–50% less than in the fixed-coxa leg.
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predicted that our vertical loading regime would provide leg
stiffness values that more closely matched keffvert than kSLIP.
Vertical leg stiffness values measured in the present study
ranged from 9·N·m–1 (free-leg) to 27·N·m–1 (fixed-leg)
(Fig.·9A,B) for cockroaches running at their preferred stride
frequency (8·Hz) and with displacement amplitudes equal to
the fluctuations of their center of mass (0.3·mm).

The similarity in measured and predicted leg stiffness values
has several implications. First, it suggests that the exoskeleton
may be a major contributor to leg stiffness. A detailed study

of the coxa–body joint muscles and perhaps the femur reductor
muscle at the trochanter–femur joint (Watson et al., 2002) is
needed to test this assertion further, since we could only bound
their function with a fixed- and free-coxa preparation. Second,
the vertical loading regime for insects appears to yield
reasonable estimates of leg stiffness. This may result from the
fact that the relative compression of the SLIP in hexapedal
runners is only one-third that observed in bipedal runners
(Blickhan and Full, 1993). Hexapedal trotters also have far
lower SLIP fore-aft ground reaction forces relative to vertical
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Fig.·9. Hysteretic damping model fitting.
(A) Hysteresis loops recreated using the
stiffness (kh) and damping (
) parameters
from the hysteretic damping model fit (red
line) closely matched the actual data (blue
line) at low amplitudes. (B) Nonlinearities of
the leg were not captured by the linear
lumped parameter model, but the hysteretic
model’s peak-to-peak displacement, force
and area inside the loop were within 10% of
the actual data.

Fig.·8. Hysteretic damping model stiffness and
damping coefficients as a function of frequency
at amplitudes of 0.1 (circles), 0.5 (squares) and
1.0·mm (triangles). (A) Stiffness of the fixed-
coxa leg increased with frequency from 0.05 to
25·Hz. The slopes and intercepts of the
0.3–1.0·mm amplitude oscillations were not
significantly different from each other but were
significantly lower than the 0.1·mm oscillations.
(B) Stiffness of the free-coxa leg increased
linearly with increasing frequency. As in the
fixed-coxa preparation, the slopes and intercepts
of the 0.3–1.0·mm amplitude oscillations were
not significantly different from each other but
were significantly lower than the 0.1·mm
oscillations. The slopes and intercepts were
50–60% lower for the free-coxa leg than for the
fixed-coxa leg. (C) Structural damping factor of
the fixed-coxa leg was independent of oscillation
frequency and amplitude. (D) Structural damping
factor of the free-coxa leg also was independent
of frequency and amplitude. Hysteretic damping
in the fixed-coxa leg was 30% less than in the
free-coxa leg.
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forces than do bipedal runners (Blickhan and Full, 1993).
Third, the present leg stiffness data support the contention that
hexapeds have a very stiff SLIP. Blickhan and Full found that
the relative kSLIP for hexapedal trotters, like cockroaches, was
three times greater than values for bipedal runners and twice
as great as quadrupedal trotters (Blickhan and Full, 1993). The
relative stiffness of an individual cockroach leg reported here
was equal to that estimated for a single leg of a biped or
quadruped, despite the fact that insects appear to bounce off a
tripod of legs each step (Blickhan and Full, 1993; Farley et al.,
1993; Full and Tu, 1990).

The relatively high leg stiffness of hexapods may reveal a
different strategy for the control of running compared with
large bipeds and quadrupeds. The relatively high stiffness in
hexapods results in small fluctuations of the center of mass.
Preventing large fluctuations of the body may allow small,
sprawled-posture animals to avoid contact with the substrate.
The greater, relative kSLIP in cockroaches results in higher
relative frequencies that minimize falling time and increase the
number of ground contacts to more quickly respond to
perturbations or generate maneuvers.

Phase shift, energy and resilience

Resilience of the cockroach leg measured from cycle
energies (Fig.·5) ranged from 0.6 in the free coxa to 0.75 in the
fixed coxa (Fig.·6). These values are lower than that reported
for isolated biological material known to participate in energy
storage and return. Dynamic tensile tests of the plantaris
tendon of sheep produced resilience values of 0.93 (Ker, 1981).
Resilin, an elastomer involved in insect flight (Ellington, 1984;
Weisfogh, 1973) and retraction of the cockroach tarsus during
walking (Frazier et al., 1999; Neff et al., 2000) is 96–97%
resilient (Gosline, 1980). Katz and Gosline calculated that the
locust tibia used in jumping was more than 90% resilient (Katz
and Gosline, 1992). Leg resilience values for the cockroach in
the present study (Fig.·6) were more similar to those reported
for arachnid joints that lack extensor muscles. Sensenig and
Schultz showed that such joints with well-developed
transarticular sclerites have resilience values from 70 to 90%,
with the stored energy producing large enough torques to
extend the joint during running (Sensenig and Schultz, 2003).

The resilience of cockroach legs was independent of
frequency at all but the largest displacements (Fig.·6A,B;
Table·2). At the largest amplitude oscillations, the increase was
only 6% over two orders of magnitude in frequency. A similar
resilience independence has been measured in sheep tendon
from 1 to 11·Hz (Ker, 1981). The frequency independence of
resilience in oscillating cockroach legs resulted from Eloading,
Eunloading and Elost all changing little from 0.1 to over 20·Hz
(Fig.·5). If cockroach legs function as a spring during
locomotion, they would have the potential to return the same
amount of energy at all running frequencies and speeds, all else
being equal.

Calculating resilience using phase-shift (�) equations
(Eqns·6,·7; Fig.·4C,D) and the linear assumptions inherent in
the complex modulus (E*) over-estimated resilience by 23%,

yielding values approaching 90% (Fig.·6C). Linear models
assume perfect ellipsoids for force–displacement, hysteresis
loops. Force–displacement data from cockroach legs became
non-linear at displacements larger than 0.3·mm (Fig.·2C,D).
The phase shifts of the raw data were less than that of the
model, resulting in the substantial over-estimate of resilience
(Fig.·6C). Linear models should be used cautiously with non-
linear biomaterials. Whenever possible, resilience should be
calculated by directly measuring force and displacement and
using Eqn·3.

Hysteretic damping model

Force–displacement data from cockroach leg oscillations
could not be modeled by a simple spring in parallel with a
viscous damper (Eqn·4). We rejected the use of a Voigt model
because no constant damping coefficient could be derived.
Damping coefficient, c, varied by nearly four orders of
magnitude over the range of frequencies tested (Fig.·7C,D).
The Voigt model assumes that hysteresis or Elost decreases as
oscillation frequency increases. Hysteresis (Fig.·2) or Elost

(Fig.·5E,F) for the cockroach leg were independent of
frequency or showed only a weak dependence on frequency at
the larger displacements.

The dynamic properties of cockroach legs measured in the
present study are not unusual. Many of the mechanical
properties of the cockroach leg are characteristic of the
majority of soft, biological tissues. The nonlinear,
force–displacement relationship and the frequency
independence of hysteresis are shared by muscles, arteries,
veins, skin, tendon and collagen among other biological
materials (Fung, 1984; Fung, 1993), as well as by human-
made, rubber-based elastomers (Vincent, 1990). To better
characterize the mechanical behavior of biomaterials, Fung
proposed the use of the hysteretic damping model (Fung, 1967)
that has a long history in analyzing vibration damping in
airfoils (Fung, 1956), soils (Wolf, 1985), and elastomers
(Nashif et al., 1985). The hysteretic damping model is so
named because it was designed to reproduce the frequency
independence of hysteresis or Elost per cycle. Internal, material
damping is considered dominant over viscous damping, so that
damping is proportional to displacement. The model is simple
and linear, possessing analytic solutions to sinusoidal, dynamic
oscillations. Stiffness and damping coefficients are
independent of frequency, so the behavior over a wide
frequency range can be described using only two parameters.
Additionally, there is little error introduced by integrating or
differentiating the raw force or displacement data, since fitting
the function (Eqn·11) requires only data that were directly
measured.

The hysteretic damping model fits the cockroach leg
force–displacement data over a wide range of frequencies and
displacement using just two parameters, kh and 
 (Fig.·9).
Because we determined kh and 
 using a least-squares method,
the hysteresis loops recreated using the model coefficients
captured, within 10%, the energies, resiliences and peak forces
and displacements. Hysteretic leg stiffness increased
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significantly as oscillation frequency increased from 0.05 to
25·Hz, but only by a small percentage (Table·1; Fig.·8A,B).
The structural damping factor, 
, for both the fixed- and free-
coxa legs was independent of frequency and amplitude from
0.1 to 25·Hz (Table·1; Fig.·8C,D).

Legs as energy-conserving springs during running

While the dynamics of small, running arthropods from
cockroaches to crabs have been modeled as a spring-mass
system, no elements have been discovered that store and return
energy like a SLIP (Blickhan and Full, 1993; Sensenig and
Shultz, 2003). The hindleg of the cockroach B. discoidalis is a
candidate for an exoskeletal spring element due to its vertically
oriented joint axes, which cause vertical ground reaction forces
to passively bend the leg cuticle rather than a joint under
muscle control. Given the material properties of the cockroach
leg from the present study, we can estimate the extent to which
the leg can function as an effective energy-conserving spring.

Running at 36·cm·s–1 with a stride frequency of 12·Hz, a
2.5·g B. discoidalis generates a minimum of 32·�J of external
mechanical work per step to lift and accelerate its center of
mass (calculated from figs·7 and 8 of Full and Tu, 1990).
Dynamic oscillations at 12·Hz of the hindleg at the amplitude
of the center of mass fluctuation (0.3·mm) induced leg forces
of 6.91±0.58·mN with a stiffness of 10.98±1.03·N·m–1 in the
free-coxa preparation and 23.88±2.02·N·m–1 in the fixed-coxa
preparation (Fig.·8A,B). To determine the amount of
mechanical energy that could be stored in a SLIP, we must first
estimate its kSLIP. Since we oscillated the leg vertically at an
amplitude equal to the vertical deflection of the center of mass
during running, we assumed that our leg stiffness values
approximate keffvert. We converted our values into kSLIP using
eqn·5 from Farley et al. (Farley et al., 1993), with a landing
angle of 28.4°, a SLIP compression of 2·mm and a hip height
of 12·mm. Blickhan and Full calculated that each of the three
stance legs contributed a stiffness of 5.85·N·m–1 to the kSLIP of
B. discoidalis (Blickhan and Full, 1993). Our estimated free-
coxa kSLIP for one leg was 3.15·N·m–1, whereas the fixed-coxa
kSLIP was 6.76·N·m–1, bounding Blickhan and Full’s estimate
(Blickhan and Full, 1993). The kSLIP results from a support
tripod and is therefore three times the single-leg kSLIP, ranging
from 9.45 to 20.28·N·m–1 depending on the coxa preparation.
The energy stored in a SLIP (ESLIP) is:

ESLIP = G kSLIP (
L)2·, (12)

where 
L is the compression of the virtual leg spring [2·mm
using eqn·3 from Blickhan and Full (Blickhan and Full, 1993)].
Using a kSLIP for the free-coxa preparation, the energy stored
in an undamped-SLIP is 20·�J per step. Damping is present,
however, with resilience values at approximately 66%
(Fig.·6B). The damped-SLIP could therefore store and return
40% (13 out of 32·�J) of the external mechanical work done
to the center of mass each step. From this, we cannot reject the
possibility that the hindleg of B. discoidalis operates as an
energy-conserving spring during running.

Although our estimate of energy storage and return is similar

to values for kangaroos (50%) (Alexander and Vernon, 1975),
wallabies (25%) (Biewener and Baudinette, 1995) and humans
(50%) (Ker et al., 1987), it should be considered, at best, as a
first step towards determining the spring-like function of
arthropod legs for a variety of reasons. First, our estimate of
energy storage and return is almost certainly too high. The
actual mechanical work done is likely to be much greater
because the three legs of the support tripod do positive and
negative work simultaneously as they push against one another
(Donelan et al., 2002). Preliminary estimates of total
mechanical work by integrating the instantaneous power at
each joint over time result in values far exceeding the external
work of the center of mass. We suspect future estimates of
energy conservation to be closer to kangaroo rats (8%)
(Biewener et al., 1981) than kangaroos. Second, even though
each leg of an insect generates the same magnitude of vertical
ground reaction force, horizontal forces differ along with leg
morphology and orientation (Full et al., 1991). Studies directly
measuring SLIP function during running with natural loading
of the legs need to be conducted given the encouraging results
of the present study. Third, we took advantage of the hindleg’s
greater dependence on passive structures, but future studies of
the middle and front legs will require a greater understanding
of muscle–apodeme function. Our simplifying assumption that
all leg pairs contribute equally to spring-like function is
unlikely to be verified.

Damping, stability and energy management

By their very name, spring-mass models of legged terrestrial
locomotion have been biased towards spring-like energy
conservation. Yet, here we report direct measurements of
energy in oscillating cockroach legs that show the possibility
of substantial damping even in skeletal structures (Figs·5,·6).
We must remember that while the center of mass acts as if it
were a SLIP during running, the same behavior could result in
the absence of elastic structures where energy is lost to
damping in the first half of the step, but then added in the
second half of the step by way of muscle activation (Alexander,
1988). Surprisingly, human runners still use movement
patterns that resemble a spring-mass system even when they
must perform extra mechanical work on sand (Lejeune et al.,
1998). Moritz and Farley discovered that human legs do not
behave like springs during hopping on damped surfaces, yet
their center of mass follows the same bouncing trajectory as if
they were on an elastic surface (Moritz and Farley, 2003).
These data do not support the view that animals use bouncing
gaits solely because legs are energy-conserving springs.

The primary role of arthropod legs during running may not
be energy storage and return. Full and Koditschek have argued
(Full and Koditschek, 1999) that energy management resulting
in stable locomotion is as important as energy minimization
(Alexander, 1988; Cavagna et al., 1977). Ting et al.
demonstrated that dynamic stability was required to explain
rapid running in insects (Ting et al., 1994). Using a feed-
forward, hexapod model, Kubow and Full showed that
cockroach locomotion viewed in the horizontal plane could be
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dynamically self-stabilizing with control algorithms essentially
embedded in the mechanical system (Kubow and Full, 1999).
Velocity perturbations alter the translation and/or rotation of
the body, thereby providing ‘mechanical feedback’ through
alterations in leg moment arms. With their simple lateral leg
spring model, Schmitt and Holmes showed that passive
mechanics of a spring-mass system locomoting forward by
bouncing from side to side can provide asymptotic stability in
body rotation and orientation following a lateral perturbation
(Schmitt and Holmes, 2000a; Schmitt and Holmes, 2000b).
With the addition of energy absorption, the lateral leg spring
model becomes asymptotically stable with respect to velocity
(Schmitt and Holmes, 2003). Estimating model parameters,
such as mass, leg spring stiffness, leg angle, leg length and
inertia, for the cockroach B. discoidalis reveals that animals
operate at or near the stability optimum for each parameter
(Schmitt et al., 2002). Spring-like center-of-mass trajectories
may simplify the control of locomotion.

Finally, limbs do not only function during stance but must
swing back to their anterior position to support the next step. The
mechanical properties that manage energy could be critical if a
leg gets perturbed when in the air. While contributing to energetic
inefficiency, damping may play an important role in simplifying
neural control and rejecting external perturbations. Feedback
control using reflexes works best given high loop gains and little
delay (Rack, 1981), but this situation is rarely seen in rapidly
moving animals. Due to reflex delays during both conduction and
muscle activation/force generation, the immediate response of a
leg to an external perturbation, such as rough terrain or debris,
may depend solely on its passive mechanical properties (Brown
and Loeb, 2000; McMahon and Greene, 1979; Rack, 1981). This
‘zero delay, intrinsic response of a neuromuscular-skeletal
system to a perturbation’ that can act before reflexes has been
termed a ‘preflex’ (Brown and Loeb, 2000).

Taken together, these studies support the hypothesis that
tuned musculo-skeletal structures, such as legs, must manage
energy for rapid running to be most effective.
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