
Biol. Cybern. 91, 76–90 (2004)
DOI 10.1007/s00422-004-0498-y
© Springer-Verlag 2004

Dynamics and stability of insect locomotion:
a hexapedal model for horizontal plane motions

Justin E. Seipel1, Philip J. Holmes1,2, Robert J. Full3
1 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
2 Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
3 Department of Integrative Biology, University of California, Berkeley, CA 94720, USA

Received: 23 January 2004 / Accepted: 22 June 2004 / Published online: 21 August 2004

Abstract. We develop a simple hexapedal model for the
dynamics of insect locomotion in the horizontal plane.
Each leg is a linear spring endowed with two inputs,
controlling force-free length and “hip” position, in a ste-
reotypical feedforward pattern. These represent, in a sim-
plified manner, the effects of neurally activated muscles in
the animal and are determined from measured foot force
and kinematic body data for cockroaches. We solve the
three-degree-of-freedom Newtonian equations for cou-
pled translation-yawing motions in response to the inputs
and determine branches of periodic gaits over the animal’s
typical speed range. We demonstrate a close quantitative
match to experiments and find both stable and unstable
motions, depending upon input protocols. Our hexaped-
al model highlights the importance of stability in evalu-
ating effective locomotor performance and in particular
suggests that sprawled-posture runners with large lateral
and opposing leg forces can be stable in the horizontal
plane over a range of speeds, with minimal sensory feed-
back from the environment. Fore–aft force patterns char-
acteristic of upright-posture runners can cause instability
in the model. We find that stability can constrain funda-
mental gait parameters: our model is stable only when
stride length and frequency match the patterns measured
in the animal. Stability is not compromised by large joint
moments during running because ground reaction forces
tend to align along the leg and be directed toward the cen-
ter of mass. Legs radiating in all directions and capable of
generating large moments may allow very rapid turning
and extraordinary maneuvers. Our results further weaken
the hypothesis that polypedal, sprawled-posture locomo-
tion with large lateral and opposing leg forces is less effec-
tive than upright posture running with fewer legs.

1 Introduction

Insects can run stably over rough ground at speeds high
enough to challenge the ability of proprioceptive sensing
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and neural feedback to respond to perturbations “within a
stride”. Motivated by experiments on and modeling of the
cockroach Blaberus discoidalis as a rigid body subject to
prescribed foot forces, due to Kubow and Full (1999), and
by the suggestion of Brown and Loeb that, in rapid move-
ments, “detailed” neural feedback (reflexes) might be par-
tially or wholly replaced by largely mechanical feedback
(preflexes) (Brown et al. 1995),1 our group showed that a
simple, energetically conservative model with passive elas-
tic legs could produce asymptotically stable gaits (Schmitt
and Holmes 2000a,b). This work in turn prompted exper-
iments on rapidly running cockroaches (Jindrich and Full
2002) that strongly support the preflex hypothesis.

Our lateral leg spring (LLS) model echoes, in the hor-
izontal plane, the passive spring-loaded inverted pendu-
lum (SLIP) (Cavagna et al. 1977; McMahon and Cheng
1990), which has been successful in modeling saggital
plane center of mass (COM) motions of a broad range of
animals (Blickhan 1989; Blickhan and Full 1993). Since
the insects of interest do not significantly flex their head-
thorax-body and their limbs contribute only 6% of the
total mass (Kram et al. 1997), in Schmitt and Holmes
(2000a,b) we used a rigid body endowed with a pair of
massless effective legs, each representing the support tri-
pod of front, rear, and contralateral middle legs during
stance in hexapedal locomotion. Each leg was placed in
ground contact at a fixed extension length (correspond-
ing to zero axial force) and fixed angle relative to the body
and allowed to pivot and compress freely during the stance
phase, being lifted when the force first returned to zero, at
which instant the contralateral leg touched down. The legs
were attached to the body at a moment-free pivot (“hip”
joint), the center of pressure (COP), which may be fixed or
allowed to move relative to the body during stance, and
the foot contact point was also assumed moment-free.

Depending upon hip position or hip motion during
stance, this passive model can yield stable periodic gaits.

1 Brown and Loeb (2000, Sect. 3) define a preflex as “the zero-delay,
intrinsic response of a neuromusculoskeletal system to a perturba-
tion”, and they note that preflexes are programmable via preselection
of muscle activation.
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Stability derives from “angular momentum trading” as the
body’s support (constraint) point switches from stride to
stride. An appropriate notion of stability for such piece-
wise-holonomic systems (Ruina 1998) is that of partial
asymptotic stability: due to energy conservation and rota-
tional invariance, two of the eigenvalues of the linearized
Poincaré map were necessarily unity; thus, at best, the
orbits were only Liapunov or neutrally stable.

In detailed parameter studies (Schmitt and Holmes
2001) and comparisons with experimental data from the
cockroach Blaberus discoidalis (Schmitt et al. 2002), we
found that, while the bipedal models of Schmitt and
Holmes (2000a,b) could, with moving COP, qualitatively
reproduce observed force and moment patterns, the lat-
ter in particular were an order of magnitude too low.
Introducing prescribed torques and muscle actuation can
produce realistic moments and yawing motions, but only
at the expense of reversing the net fore–aft force oscil-
lations (Schmitt and Holmes 2003). However, the addi-
tion of Hill-type activated muscle models, and dissipation
characteristic of flexing joints, did not disrupt the pas-
sive stability mechanisms and added asymptotic stabil-
ity with respect to forward speed (Schmitt and Holmes
2003).

In the present paper we develop a hexapedal system that
combines the advantages of the Kubow–Full and bipedal
LLS models, without adding much complexity. Its rudi-
mentary representation of muscle-actuated legs driven by
a stereotyped central pattern generator (CPG) reproduces
forces and moments correctly while retaining the passive
spring elements responsible for stability in the LLS model.
Actuation is purely feedforward during each stride, the
only proprioceptive signal employed being detection of
zero leg force, which signals liftoff of the current stance tri-
pod and touchdown of the next. The introduction of actu-
ated legs and a more realistic hexapedal geometry yields
a better quantitative agreement with data and is a step
toward our goal of developing an integrated neuromuscu-
lar locomotion model, in which the CPG will innervate,
via motoneuron models, Hill-type muscles. We believe that
relatively simple models such as the present one, “tem-
plates” in the terminology of Full and Koditschek (1999),
can contribute both to improved understanding of com-
plex biological systems and to the design of bioinspired
machines. See Dickinson et al. (2000) and the issue in
which it is found (Chong et al. 2000) for an overview on
locomotion, modeling issues, and some implications for
robotics research.

This paper’s contents are as follows. Section 2
describes the hexapedal model, the (idealized) foot force
data (Kubow and Full 1999) used in its formulation, and
the derivation of feedforward inputs that mimic muscle
actuation by the CPG. In Sect. 3 we perform numerical
integrations of the coupled translation/yawing dynami-
cal equations, both at preferred speed and over a range
of speeds typical of the insect. We find both stable and
unstable gaits, depending upon input parameters, notably
“desired” forward speed, stride frequency, and foot touch-
down points, and we describe a protocol that yields stable
gaits over the typical speed range employed by Blaberus.

Section 4 develops the biological implications of this mod-
eling study and in particular shows the possible constraints
that stability imposes on fundamental gait variables, as
well as the advantage of differential leg function associ-
ated with large lateral and opposing forces. We summa-
rize and suggest future work in Sect. 5. Technical details,
including those on numerical methods, are relegated to the
Appendix.

We use the methods of nonlinear dynamics
(Guckenheimer and Holmes 1990) in our analysis and
presentation of model behavior. We refer the reader
to Full et al. (2002) for an introduction to the main ideas
of asymptotic stability, Poincaré maps, eigenvalues, and
phase space from a biomechanical viewpoint.

2 The hexapedal model

As noted above, we wish to generalize both the sim-
ple bipedal passive and active leg spring (LLS) models
of Schmitt and Holmes (2000a, 2001, 2003), in which
each support tripod is replaced by a single effective leg
that has either a fixed or a moving “virtual hip pivot”,
and the Kubow–Full hexapedal model (Kubow and Full
1999), in which forces are prescribed and unchanged
by perturbations. We retain the massless, passive elas-
tic elements responsible for stability in the simple LLS
models, but move closer to biological reality and thus
obtain better quantitative agreement with experiment.
As in Schmitt and Holmes (2000a), to maintain sim-
plicity, we represent each multijoint leg and its mus-
cles by a single telescoping unit that supports only axial
forces but whose unstressed length, l(t), and attachment
point (“hip”, or body-coxa joint) relative to mass cen-
ter, d(t), are prescribed functions of time. Thus each
leg has two inputs, representing the coordinated effects
of muscle contractions driven by motoneurons excited
by the insect’s central pattern generator, that allow us
to match experimentally observed foot force magnitudes
and directions. (Instead of a moving hip, one could sup-
ply torques at a fixed pivot via a torsional spring, but
the moving hip protocol seems simpler, and moreover
exploratory studies with torsional springs did not yield
any stable gaits, as noted at the end of Sect. 3.2. Implica-
tions for moments produced by individual legs, discussed
in Sect. 4.3, are similar in both cases.)

While this strategy may be generalized to other hexa-
pods and multilegged animals, it is applied here to the
death’s head cockroach Blaberus discoidalis running in a
double-tripod gait at its preferred speed, and parameters
specific to that insect are used. The experimental data of
Full and Tu (1990), Full et al. (1991), and Ting et al. (1994)
include individual leg (vector) forces and positions of the
feet at touchdown; from these, following Kubow and Full
(1999) and employing simplifying assumptions, we derive
in a self-consistent manner typical forces and body mo-
tions throughout the left and right tripod stance phases.
The six horizontal plane force components at each sup-
port tripod, with some planar kinematics, then yield the
six required inputs.
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Fig. 1. The double-tripod gait and a mechanical realization as a triad
of prescribed forces applied to a planar rigid body, from Kubow and
Full (1999)

2.1 Insect data

Figure 1 shows the typical double-tripod gait exhibited by
many hexapedal runners. Figure 2 shows the mechanical
model, body and inertial coordinate systems, and leg num-
bering scheme. The legs numbered 1, 2, and 3 comprise the
left stance tripod and correspond to the legs on the ground
during the first stance phase in Fig. 1, also called the left
stance phase or half-stride. Likewise, legs 4, 5, and 6, the
right stance tripod , correspond to those on the ground for
the second half-stride. Figure 3 shows sinusoidal approx-
imations of filtered and averaged forces observed during
experiments (Full and Tu 1990, 1991; Full et al. 1991; Ting
et al. 1994), as derived in Kubow and Full (1999), given
in the inertial frame (ex, ey), with the animal running at
its preferred speed in the y-direction (as we shall see, its
COM and body orientation oscillate slightly about the
purely straight path). These take the forms:
Fix = Aix sin �t , i =1, . . . ,6 ,

Fiy = Aiy sin �t , i =1,3,4,6 , (1)
Fiy = Aiy sin 2�t , i =2,5 ,

where � denotes the leg cycle or stride frequency (in
rad/s−1). Table 1, also adapted from Kubow and Full
(1999), summarizes geometrical and biomechanical data,
including foot touchdown positions relative to COM in
body coordinates, to be used below.

Fig. 2. The coordinate systems and leg numbering scheme
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sin�t ; Fjy =Ajy sin�t , j =1,3; F2y =A2y sin 2�t . From Kubow and
Full (1999)

2.2 Actuation, liftoff, touchdown, and other assumptions

Figure 4a shows a mechanical realization of the leg model.
Moment-free pivots are assumed at the foot, which is fixed
in the inertial frame during stance, and at the (virtual)
hip, which moves along the body centerline. The spring is
assumed linear and the legs massless. Actuators adjust the
unstressed leg lengths li(t) and hip position relative to the
COM di(t)e2, so that the axial force developed in each leg
is

Fi =ki(li(t)−|qi |) , (2)

where |qi | is total leg length. Left stance begins with legs
1–3 placed with their feet at the touchdown points of
Table 1 and ends when the first of the forces Fi, i =1,2,3
drops to zero, at which instant legs 1–3 are raised, legs
4–6 touch down at their appointed (laterally symmetric)
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Table 1. Cockroach parameters: adapted from Kubow and Full
(1999)

Parameter Value

Body mass (m) 0.0025 kg
Moment of inertia about vertical axis (I ) 2.04 × 10−7 kg m2

Stride frequency (f =�/2π ) 10 Hz
Preferred fore–aft velocity (Vpref ) 0.25 m sec−1

Foot touchdown in body coords (e1, e2)
b1, front left foot (−0.011,+0.02) m
b2, middle right foot (+0.013,+0.007) m
b3, hind left foot (−0.013,−0.01) m
f or i =1..3, bi+3,e1 =−bi,e1 and
bi+3,e2 =bi,e2

Force Magnitude (inertial x-component)
A1x , A4x front legs +0.0051,−0.0051 N
A2x , A5x middle legs −0.0051,+0.0051 N
A3x , A6x hind legs +0.0032,−0.0032 N

Force Magnitude (inertial y-component)
A1y , A4y front legs −0.0049,−0.0049 N
A2y , A5y middle legs −0.0040,−0.0040 N
A3y , A6y hind legs +0.0049,+0.0049 N

positions, and the right stance phase begins. Thus the duty
cycle is 50%, compared to 55–65% in the insect (Ting et al.
1994, Fig. 3). This protocol models the CPG-driven mus-
cles and includes minimal proprioceptive feedback.

These simplifications and assumptions are listed in
Table 2. To complete the model prescription, in the next
subsection we deduce appropriate actuation inputs li(t),
di(t). While two inputs per leg are required to match
the two-component (horizontal) force vector measured at
each foot, choices other than the present ones are possible.
For example, hip positions could be fixed and adjustable
torques applied at each hip either directly or via a tor-
sional spring with adjustable “zero-moment” angle. We
shall briefly comment on such protocols in our discussions
of stability in Sect. 3.2.

2.3 Derivation of actuation inputs

The inputs should produce the same forces as those gener-
ated at the insect’s feet during the ideal (desired) motion:
Table 1 and Fig. 3. The functions li(t) and di(t) are there-
fore found by observing that the force components in the
individual legs of each tripod must sum to produce the
total force vector responsible for the desired body motion.
This ultimately results in two equations per leg that can
be solved uniquely for li and di , as we now show.

Table 2. Simplifications and assumptions

Rigid body model only moves in horizontal (lateral) plane
Model moves with alternating tripod gait, 50% duty cycle
Feet stay fixed in inertial space during stride
Stance phase ends and all three feet lift when any leg force = zero
Legs are assumed massless and springs linear
Hip pivots move along body centerline
Yawing motions are neglected in solving for inputs (Sect. 2.3)

Bilateral symmetry implies that leg parameters reflected
across the body centerline must be equal:

di+3(t − tR) = di(t − tL) and
li+3(t − tR) = li(t − tL), i =1,2,3, (3)

where tL and tR denote touchdown instants for succeeding
left and right stance phases. It therefore suffices to derive
inputs for one tripod, here the left: legs 1, 2, and 3. Force
consistency requires that:

Fix =Fix,desired ⇒ ki(li(t)−|qi |) qix

|qi | =Aix sin �t , (4)

Fiy =Fiy,desired ⇒ ki(li(t)−|qi |) qiy

|qi | =Aiy sin Ci�t , (5)

where qix and qiy are the inertial frame components of qi

and Aix and Aiy the force component magnitudes of (1)
(note Ci =2 for i =2, but Ci =1 otherwise).

The components qix and qiy can be written in terms
of the COM path r(t)= (x(t), y(t)), and di(t). From the
vector representation of Fig. 4b, qi = r+di −pi , or:

qix =x(t)−di(t) sin θ(t)−pix ,
qiy =y(t)+di(t) cos θ(t)−piy ,

(6)

where pix and piy are formed from the ith foot touchdown
location in body coordinates, given in Table 1 as the vector
b; hence:

pix =bi,e1 cos θ(t)−bi,e2 sin θ(t)+x(tL) ,
piy =bi,e1 sin θ(t)+bi,e2 cos θ(t)+y(tL) ,

(7)

and the COM position appears in qix, qiy only in the rel-
ative distances x(t)−x(tL) and y(t)−y(tL). This transla-
tion invariance will be important later, when we reduce the
problem to study of a four-dimensional “full-stride map”.

To solve (4–7) for di(t) and li(t) requires the COM path
r(t), which may be found by integrating the total forces on
and moments about the COM twice and applying appro-
priate initial conditions. However, the moments in turn
depend upon the path and so we simplify by decoupling
rotational motions using the fact that yaw (θ ) variations
are small (±5◦ Ting et al. 1994; Kubow and Full 1999)
to justify approximation of the rotation matrix implicit in
(6) and (7) by the identity. By thus ignoring yawing and
setting θ(t)≡0, we effectively approximate the force com-
ponents in the inertial frame by those in the body frame.
We may then solve explicitly for r(t) by simply integrating
Newton’s equations for the COM translation dynamics:

mr̈ = F, with F= (Fx,Fy)

=
(

3∑
i=1

Aix sin �t,

3∑
i=1

Aiy sin Ci�t

)
. (8)

Choosing the constants of integration to obtain periodic
motions in the x direction and the preferred average speed
in the y direction, and using the fact that certain force
components cancel (Table 1), this yields:

(x(t), y(t)) =
(
−A3x(m�2

)−1 sin �t,

−A2y(4m�2
)−1 sin 2�t +Vdest

)
, (9)
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Fig. 4. Mechanical model for a single leg
(a) and kinematics (b)
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Fig. 5. The nominal COM path of (9), computed neglecting yawing

where we take tL = 0 and denote the desired average for-
ward speed by Vdes, rather than Vpref (Table 1), since we
will ultimately wish to vary Vdes to produce gaits over the
animal’s entire speed range. The resulting path, with Vdes =
Vpref , is shown in Fig. 5.

To solve for di(t) we divide (4–5) and use (6–7) with
θ ≡0 to write:

y(t)+di(t)−piy = [x(t)−pix ]
Fiy

Fix

⇒di(t)=bi,e2 −y(t)+ (x(t)−bi,e1)

[
Aiy sin Ci�t

Aix sin�t

]
. (10)

Finally, li(t) is found by inverting (2):

li(t)=
√

q2
ix +q2

iy + 1
k

√
A2

ix sin2 �t +A2
iy sin2

Ci�t , (11)

and substituting for qix and qiy using (6–7) with θ ≡ 0.
Thus the six inputs are uniquely determined by the six
foot-force components. We note that the spring law does
not enter until the final step [it does not influence the
pivot positions di(t)] and that a similar analysis will apply
to a nonlinear spring, provided that the force law can be
inverted.

Figure 6 shows di(t) and li(t) for i = 1,2,3, with the
spring constant k set at 1 Nm. Increases in k would lead,
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Fig. 6. The prescribed inputs, di(t) and li (t), for i = 1,2,3; Vdes =
Vpref =0.25 ms−1, �=20π rad/s−1 and k =1 Nm

via (11), to decreases in l(t). The unstressed lengths on
average obey l1 <l2 <l3, echoing leg lengths in the insect.
Also, the front and back (ipsilateral) hips move backward
relative to the body during stance, while the middle (con-
tralateral) hip moves forward. The latter varies by over
3 cm, a greater distance than the insect’s body length. We
recall that these moving centers of pressure imply torques
at the animal’s (fixed) joints: thus this model suggests that
the insect generates middle-leg torques larger than those
of the front and hind legs.

3 Dynamical behavior

Equipped with actuation inputs that produce a self-
consistent periodic gait in the absence of body rotation,
we now integrate the coupled translation-rotation equa-
tions of Newtonian planar rigid body dynamics through
each stance phase:

mr̈=F, I θ̈ =M . (12)

Here F denotes the sum of the force vectors, in the iner-
tial frame, for each foot of the current stance tripod, and
M denotes the summed moments about the COM due to
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those forces; specifically, from the relations developed in
Sect. 2, we have:

Fix = ki(li(t)−|qi |) qix

|qi | , Fiy =ki(li(t)−|qi |) qiy

|qi | ,

Mi = −di(t)Fi

|qi | (qix cos θ +qiy sin θ) , (13)

where |qi |=
√

q2
ix +q2

iy and qix and qiy are determined from
(6) and (7).

Along with the stance switching protocol defined in
Sect. 2.2 (Table 2), (12) and (13) define a hybrid dynamical
system (Guckenheimer and Johnson 1995). The “final con-
ditions” (x(tLO), y(tLO), θ(tLO), ẋ(tLO), ẏ(tLO), θ̇(tLO)) at
the end of each stance phase become the initial conditions
for the next, and the appropriate foot placement parame-
ters bi,ej (Table 1) are applied for the new tripod. As noted
in Sect. 2.2, tLO is determined by the first leg force Fi that
drops to zero.

Although the time-dependent inputs are prescribed,
due to the rotational coupling these equations are
nonlinear and insoluble in closed form. Below we
use direct numerical simulation of an initial value
problem and use such simulations to define full-
stride Poincaré maps (Guckenheimer and Holmes 1990)
and numerical linearization to compute the Jacobian
and hence find eigenvalues that characterize stability.
We start with direct simulations. For the first runs
reported below, we use the inputs li(t), di(t) derived from
data of Table 1 at the insect’s preferred velocity; sub-
sequently we will derive inputs appropriate for running
throughout the animal’s typical speed range.

3.1 Stable running at preferred speed

Using the Runge–Kutta algorithm ode45 within MAT-
LAB, we first integrated (12) and (13) with very large
I to check that the “design” COM path of Fig. 5 was
produced and then reduced to the physically relevant
I =2.04×10−7, finding the steady gait illustrated in Fig. 7.
The force and velocity components are close to those of
the idealized insect. More strikingly, direct comparisons
with nonaveraged data shown in Fig. 8 confirm that the
model reproduces rather well both translation and rota-
tion dynamics of insects running at preferred speed. We
note, however, that the full, coupled dynamics results in
a different average forward speed from the desired speed
Vdes used in derivation of the inputs (here, 0.26 ms−1 com-
pared to 0.25 ms−1).

We now illustrate that the gaits found above are
partially asymptotically stable in the sense noted in the
introduction by applying discrete perturbations in COM
velocity and body angle and body angular velocity. In each
case, after establishing a stable gait with average direc-
tion of motion along the y-axis, we doubled one of the
four touchdown conditions (θ(tL), ẋ(tL), ẏ(tL), θ̇ (tL)) and
continued integrating. Figures 9 and 10 show examples
of the results, with COM paths shown and solutions also
projected onto the (Ve1, Ve2)-phase plane to show how the
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Fig. 7. a COM lateral (Vx ) and fore–aft (Vy ) velocities, yaw angle
(θ ), and body angular velocity (ω) vs. time for the hexapedal model
running in a steady gait at preferred speed. b COM path in the (x, y)-
plane and COM velocity components (Ve1, Ve2) in the body frame

gait returns to a stable limit cycle in “internal” body coor-
dinates, while drifting with respect to heading angle (θ )
but returning to a straight path.

3.2 Running over a range of speeds: Poincaré maps
and stability

Equations (10 and 11) reveal that the desired speed Vdes,
which appears in the expression for the COM path (9),
influences the inputs. A simple way to produce gaits over
a range of speeds is, therefore, to recompute li(t) and di(t)
for various Vdes. We did this for the range 0.1–0.6 ms−1,
typically employed by Blaberus (Ting et al. 1994). To bet-
ter characterize the resulting gaits, we defined a full-stride
(left tripod touchdown to next left tripod touchdown)
Poincaré map by assembling numerical solutions of (12)
and (13) for many initial (touchdown) conditions and
solved for fixed points by a Newton–Raphson scheme,
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Fig. 8. Comparison of insect data with the
LLS Hexapod model. Fore–aft and lateral
force (Fy,Fx ) and velocity (Vy,Vx ), moment
and yaw (θ ) data from a single trial on
Blaberus discoidalis (Full et al. 1991; Kram
et al. 1997) are shown as dark solid curves. The
corresponding yaw angle variation is computed
by integrating the net moment. Yaw variations
directly measured by observing the insect are
shown dashed-dotted. For the fore–aft velocity
and force components, a second set of data
from a different trial (Full and Tu 1990)
(dashed) is included to illustrate trial-to-trial
variation in magnitudes and average speed.
See Schmitt et al. (2002) for more information
on data derivation. The model solutions are
shown as a red (or light gray) solid line
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much as in earlier bipedal studies (Schmitt and Holmes
2000a). As in that work, we introduce new coordinates:
v = COM velocity magnitude, δ = COM velocity vector
angle with respect to body frame, retained θ = angular
orientation of body in inertial frame, and ω = θ̇ = angu-
lar velocity of body (Fig. 2). Letting xk = (vk, δk, θk,ωk),
where k denotes the kth left tripod touchdown, the full
stride Poincaré map thus takes the form:

xk �→P(xk)=xk+1 , (14)

and a fixed point P(x∗)=x∗ of P corresponds to a steady
(periodic) “straight gait”.
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Fig. 10. Trajectory in the (x, y)-plane and (Ve1, Ve2) body coordinate
phase plane for a perturbation in ẋ, applied at point indicated by
arrows

We note that these four variables suffice to characterize
the body’s dynamical state at touchdown and that all six
initial conditions needed for integration of (12) and (13)
can be found from them using the leg placement vectors
bi,ej and the fact that, within stride, the dynamics depends
upon the difference between the COM location and the
foot positions [cf. (6) and (7)]. Effectively, as far as the
intrinsic body dynamics is concerned, the COM location
may be reset to (0,0) at each touchdown.

We then approximated the linearized Poincaré map as
a 4 × 4 matrix:
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[DP]ij = ∂Pi

∂xj

(15)

via the same finite difference method used in (Schmitt
and Holmes 2000a) and computed its eigenvalues
at the fixed points found above. See the appendix
for details of numerical methods. Linearized sta-
bility theory for maps (Guckenheimer and Holmes
1990; Full et al. 2002) states that if any eigenvalue
has modulus greater than one, the fixed point is
unstable: almost all neighboring solutions diverge from
it as time progresses. If all eigenvalues have moduli less
than one, the fixed point is asymptotically stable: all
solutions starting sufficiently close approach it as time pro-
gresses. However, complete asymptotic stability is impos-
sible here: the system is rotation invariant and there is
no mechanism for sensing heading; hence, to the inter-
nal dynamics all θ angles are equal.2 This implies that
the eigenvalue associated with rotational perturbations
(λ4) is necessarily unity, corresponding to neutral sta-
bility with respect to such perturbations, as illustrated
in Fig. 11. The fact that the eigenvalues found below
include one that remains unity throughout (within an error
of 0.005%) serves as a check on numerical accuracy.

We first held the leg cycle frequency f =�/2π fixed at
10 Hz and varied only Vdes, producing the branch of gaits
illustrated in the left column of Fig. 11. In the upper panels
the abcissa represents the true forward speed <v >, com-
puted as stride length divided by stride period, rather than
the COM velocity (v =

√
ẋ2 + ẏ2). While stable periodic

gaits corresponding to a fixed point of P persist above the
preferred speed, as speed is reduced to about 0.24 ms−1,
the straight gait destabilizes in a pitchfork bifurcation,
and two new stable solutions, corresponding to running
in (large) circles, emerge, as shown in Fig. 12. They sub-
sequently recollapse onto the straight gait, which restabi-
lizes in a second pitchfork bifurcation at approximately
0.15 ms−1.

Instability at lower speeds is perhaps not surprising
since the insect substantially varies its stride frequency,
particularly in the range 0.05–0.3 ms−1; at higher speeds,
stride frequency approaches ≈ 13 Hz, and the animal runs
faster by increasing its stride length. The top panels of
Fig. 11 reproduce data points from (Ting et al. 1994, Fig. 2)
illustrating this. We therefore repeated our derivation of
inputs over the range 0.1–0.6 ms−1, appropriately vary-
ing �. We first increased � throughout the entire speed
range, matching the data below 0.35 ms−1 but continuing
linearly thereafter (Fig. 11d). As shown in the second col-
umn of Fig. 11, the resulting gaits are stable at low speeds
but unstable above 0.35 ms−1. We then varied � to better
approximate the data throughout, increasing it linearly
with Vdes up to 0.35 ms−1, and holding it fixed thereafter,
as indicated by the piecewise-linear relation of Fig. 11g.
This yields the branch of gaits shown in the third column

2 Body angle θ appears in the kinematic description relating body
to inertial coordinates, but at each touchdown, like COM position,
it could be reset to 0 without affecting the internal dynamics of the
succeeding stride. Of course, to compute the COM path in physical
space, we must maintain a record of x, y and θ from stride to stride.

of Fig. 11, in which stability is preserved throughout the
entire speed range, although one eigenvalue almost
reaches unit magnitude at about 0.35 ms−1 (Fig. 11i).

Stride lengths necessarily increase with increasing speed
when frequency is held constant, so unless foot touch-
down locations are also allowed to change, foot liftoff
positions move further and further backwards relative to
the COM location. This leads to static instability as the
COM begins to fall outside the tripod defined by the stance
feet at high speeds (cf. Ting et al. 1994, Fig. 1)
and also implies unrealistically large rearward leg
extensions. It is natural, therefore, to further modify
our model touchdown protocol as stride length in-
creases to place feet further forward at touchdown,
thus maintaining the approximate symmetry that puts
the COM near the centroid of the support tripod
at midstance. This can be achieved either by increas-
ing the magnitude of the vector from the hip to the
foot touchdown position (i.e., further extending the
leg) or by decreasing the angle between the leg and
body axis at touchdown, and we chose a combina-
tion of these that effectively limits the maximal leg
extension to ±50% of its relaxed length at Vdes =
0.25 ms−1. Touchdown positions were left at the nom-
inal ones given by bj of Table 1 for Vdes ≤ 0.25
and varied linearly with Vdes for Vdes > 0.25, placing
the feet further forward and out relative to the body, as
detailed in the appendix. This yields the fourth column of
Fig. 11.

The lack of kinematic data over a range of speeds does
not allow us to confirm that the insect does precisely this,
although we do know that its COM moves backward rel-
ative to the support triangle and falls outside it at the
highest speeds (Ting et al. 1994). For simplicity, both our
frequency and touchdown protocols are piecewise linear
with respect to Vdes, while the experimental data indicates a
“smoother” relationship (Fig. 11, top panels). In choosing
Vdes =0.25 and Vdes =0.35 respectively as breakpoints for
the touchdown and frequency protocols, we have brack-
eted the speed range in which the insect transitions from
employing frequency increase to stride length increase,
and we believe that this combined variation of frequency
and touchdown positions with speed is biologically real-
istic.

As column IV of Fig. 11 shows, this final protocol fur-
ther enhances stability, in particular reducing the mag-
nitude of the largest eigenvalue within the unit circle in
the 0.2–0.4 ms−1 speed range (Fig. 11, panel l). In all four
cases, at the high-speed end, a pair of complex conjugate
eigenvalues approaches the unit circle, indicating incipi-
ent destabilization in a Hopf bifurcation (Guckenheimer
and Holmes 1990). We remark that similar bifurcations
occur for increasing speed in the bipedal model for small
moments of inertia (Schmitt et al. 2002, Sect. 5). At the
low-speed end (≈10 ms−1), for the variable-fequency pro-
tocols, a second pair of eigenvalues also approaches the
unit circle (Fig. 11f,i,l).

We end this section by observing that exploratory stud-
ies of the prescribed torque and preferred torsional spring
angle input protocols, noted in Sect. 2.2 as possible alter-
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Fig. 11. Stability properties of
the model over a range of
forward speeds. To produce
column I Vdes alone is varied;
for columns II–IV Vdes and �
are simultaneously varied as
described in Sect. 3.2 and
pictured in top panels (a, d, g)
and (j), which also show
experimental frequency/speed
data from Ting et al. (1994).
For column IV foot
placements bj are additionally
varied as described in
Sect. 3.2. b, e, h, k Bifurcation
diagrams as COM velocity
angle δ vs. “true” forward
speed <v >. c, f, i, l
Eigenvalue magnitudes of
linearized Poincaré map vs.
true speed. Note that the
eigenvalue λ4, corresponding
to rotational perturbations,
remains unity throughout; see
text

natives to varying hip position di(t), yielded no stable
gaits (although we did find periodic gaits with appropri-
ate foot forces and COM moments). In the case of pre-
scribed torques and hips coincident with the COM, it is
clear that the rotational equation entirely decouples as
I θ̈ =M(t), which may be integrated directly, leading to a
double unity eigenvalue for the linearized stride map and
unstable “drifting” solutions in which the body angular
velocity remains constant. In general, however, while other
forms of translation-rotation coupling could result in sta-
bility, our simulations suggest that this is not common, in
contrast to the present, relatively robust li(t), di(t) proto-
col. We do not at present have any “mechanical” intuition
on this finding, although we note that in other mechanical
problems similar solutions may display very different sta-
bility properties when subject to perturbations that satisfy
different constraints (Maddocks 1984, 1987).

4 Implications for biology

Animals that run over rough or inclined terrain and are
perturbed by wind, debris, and predators benefit from a
low center of mass and a sprawled posture. Legs sprawled
in all directions increase stabilizing moments that mitigate
overturning (Ting et al. 1994). However, given a many-
legged, sprawled-posture design, rapid forward locomo-
tion appears to be a challenge. Sprawled-posture runners
exhibit differential leg function. Legs on the left produce
large lateral ground reaction forces, accelerating the body
to the right, while right legs accelerate to the left (Full et al.
1991). In insects, forward-projecting (front) legs develop

decelerating forces that oppose forward motion during a
step, while hind legs accelerate the COM in the direction of
motion. Middle legs operate more like a pivoting spring,
first decelerating and then accelerating the COM during
each step. Surprisingly, the summed behavior of individual
legs can be described by a mass attached to a single vir-
tual leg spring bouncing up and down in the sagittal plane
(SLIP) (Blickhan and Full 1993) and side to side in the
horizontal plane (LLS) Schmitt and Holmes (2000a,b).
Even more startling is the fact that these simple models
can show passive dynamic stability, recovering from per-
turbations without the equivalent of extensive “neural”
feedback.

In the present study, we tested whether a simple data-
driven, six-legged model with differential leg function can
run effectively. As described above, our hexapedal mod-
els with large lateral and opposing leg forces show sta-
ble forward running over a range of velocities, and as we
now show, they also predict constraints on fundamental
gait variables and suggest that the cost of running with
a sprawled posture is reduced because joint moments are
minimized.

4.1 Stability with differential leg function

Our notion of effective legged locomotion is biased by our
familiarity with large upright-posture bipeds and quad-
rupeds. In birds and mammals, legs tend to function in
a similar way during symmetrical gaits. Each leg oper-
ates in the sagittal plane to store and return energy as
a spring (Cavagna et al. 1977). Stability in pitch is criti-
cal (Herr et al. 2002; Lee et al. 1999). Lateral leg forces
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Fig. 12. Symmetry breaking: running in circles. Two attractors, sym-
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are small and opposing forces are minimized. In gen-
eral the criteria for effective locomotion proposed for leg-
ged robots is met: zero horizontal foot-force interaction
(Waldron 1986). Sprawled-posture runners with differen-
tial leg function have been argued to be less effective since
they do not meet these criteria (Full 1993). As we now de-
scribe, the stability studies of Sect. 3 challenge this argu-
ment, and, in addition, we may capitalize on our modeling
approach to ask whether a six-legged runner could be sta-
ble if it used all its legs like an upright-posture runner.

In spite of their stability in the saggital plane, poten-
tially catastrophic instability in the horizontal plane is
possible in sprawled-posture runners, for unrecoverable
perturbations in velocity magnitude or direction can leave
them vulnerable to predators. As described above, with
inputs to each support tripod tailored to match the six
foot-force components measured in the animal (Ting et al.
1994, Fig. 3), this led to qualitatively realistic gaits but
did not ensure stability (recall that in solving for inputs,
we neglected rotational coupling, while our dynamical
model has fully coupled planar motions). Nonetheless,
the hexapedal model with differential leg function is
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Fig. 13. Gait characteristics for a modified “upright-posture” model
in which all legs exert decelerating followed by accelerating forces in
the fore–aft direction, as described in Sect. 4.1. a, b COM velocity
angle δ and eigenvalue magnitudes of linearized Poincaré map vs.
“true” forward speed <v >. c, d COM moment and yaw angle (θ )
variations for a full L-R stride at 0.25 cm/s−1. Note instability (one
eigenvalue exceeds unity) and incorrect yawing dynamics: a sine wave
emerges (bottom right) in contrast to the cosine wave in the data of
Fig. 8 (bottom left)

asymptotically stable at its preferred forward speed in
fore–aft, lateral, and yawing velocities and (necessarily)
neutrally stable in heading angle θ (Fig. 7). Forces, veloc-
ities, moments, and yaw were remarkably similar to the
data collected or calculated for direct measurements on
running cockroaches (Fig. 8). When we perturbed the state
variables by 50%, the model retuned to a stable limit cy-
cle in internal body coordinates (Figs. 9 and 10). Despite
the fact that legs generated large lateral and opposing leg
forces, the hexapedal model is stable in the horizontal
plane without feedback from the external environment.

Stability with differential leg function raises the ques-
tion of whether sprawled-posture runners would be
stable in the horizontal plane if the legs functioned
more like those of upright-posture, trotting quadrupeds
(Biewener 2003, pp. 47–48). To test this hypothesis, we
made each model leg act more like a passive spring in the
sagittal plane, generating deceleration followed by acceler-
ation in the fore–aft direction. We set the peak magnitudes
of the front and hind leg fore–aft forces to one third those
measured for the middle leg and retained the measured
lateral ground reaction forces, reasoning that any other
pattern would be difficult to attain given the sprawled pos-
ture. Recomputing the inputs di(t), li(t) from this adjusted
data, we found that this “upright-posture” model was not
necessarily stable (Fig. 13), although we only investigated
a small parameter range and we did locate a margin-
ally stable branch with forward speeds significantly (50%)
higher than design speeds (not shown). Moreover, due to
the differing fore–aft force patterns, COM moments and
yawing dynamics were unlike those observed in the insect.
Hence, unexpectedly, the pattern viewed as effective in the
sagittal plane can be unstable in the horizontal plane when
used by a sprawled-posture runner.
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4.2 Stability constraints on stride length and frequency

Remarkably general patterns of fundamental gait param-
eters have been discovered in legged animals as they
increase speed (Alexander and Jayes 1983). We used our
hexapedal model to test if horizontal plane stability might
explain changes in two such parameters: stride length and
frequency. As in Sect. 4.1, we used our modeling approach
to investigate stability using both actual data and patterns
not observed in the animal.

Trotting mammals, lizards, crabs, and cockroaches
increase speed at lower speeds primarily by raising stride
frequency, which then attains a maximum (Full 1989).
Faster speeds (e.g., during galloping) are achieved by
longer strides. In quadrupedal mammals both the max-
imum sustainable stride frequency and the speed at which
it is attained scale with body mass (Heglund and Taylor
1988). A 30-g mouse changes from a trot to a gallop at
a frequency twice that of a 9-kg dog, but at speeds one
quarter as fast. Surprisingly, 3-g cockroaches and 30-g
(eight-legged) crabs follow the same trend, suggesting the
possibility of equivalent gaits in very different morpho-
logical designs. Many explanations of gait changes have
been advanced. These include attaining high peak mus-
cle stresses (Farley and Taylor 1991; Taylor 1978, 1985) or
bone strains (Biewener and Taylor 1986), minimizing met-
abolic costs (Hoyt and Taylor 1981), scaling by dynamic
similarity (Alexander 1989; Alexander and Jayes 1983),
and the dynamic stability of oscillator kinematic mod-
els (Schoner et al. 1990; Vilensky et al. 1991; Collins and
Stewart 1993; Golubitsky et al. 1999). Herr et al. (2002)
produced pitch and forward-speed stability in dynamic
quadrupedal models during trotting and galloping. We
contend that the nature and generality of these relation-
ships points to the importance of stability as a determinant
of gait patterns.

Our hexapedal model supports the proposition that
dynamic stability in the horizontal plane can shape the
relationships of stride length and frequency with speed.
It predicts that, if an animal used its preferred leg
frequency across its whole speed range, it would be
unstable at low speeds (Fig. 11c). An increase in stride
frequency with speed provided stability at low speeds, but
the resulting gaits became unstable or grazed the stabil-
ity boundary near the speed at which cockroaches attain
their maximum stride frequency (Fig. 11g,k). Figure 14
expands upon these data by showing stability boundaries
throughout the speed–stride frequency plane and reveals
that the insect’s actual strategy – increasing frequency up
to 30–35 cm/s−1 and thereafter increasing stride length as
in column IV of Fig. 11 – allows it to remain within the sta-
ble “channel”. Note that the solid boundaries and shaded
unstable regions of Fig. 14 were computed by varying Vdes
and � over a grid of values without changing the preferred
speed touchdown data of Table 1 and still indicates a path
of gaits grazing the stability boundary (cf. Fig. 11k). When
foot touchdown positions are modified as described in
Sect. 3.2 to approximate increased stride lengths at higher
speeds, the upper stability boundary moves further out
and a reasonable stability margin is obtained throughout
(cf. Fig. 11o).

Fig. 14. A bifurcation set in desired speed-leg cycle frequency space,
showing boundaries of the region in which stable gaits exist and
the frequency protocols of Sect. 3.2. Unstable regions are shaded.
Note that the fixed frequency protocol (dashed) encounters instabil-
ity at low and/or high Vdes, while the piecewise-linear protocol (solid)
remains in the stable region, albeit grazing the stability boundary at
its breakpoint. Stability is further improved by adjusting foot place-
ments in this region, as described in Sect. 3.2, and shown by dash-dot-
ted upper boundary above Vdes =0.25. Small dots are data from Ting
et al. (1994)

It is noteworthy that stride frequency and length must
be simultaneously adjusted to maximize the stable speed
range. These results suggest that the analogs of input
parameters in the animal are also varied in concert, pre-
sumably by CPG feedforward-type “programs”, to main-
tain intrinsically stable motions. This is entirely in line with
the preflex hypothesis of a “neurally tuned” musculoskel-
etal system (Brown and Loeb 2000).

4.3 Stability with joint moment minimization

Sections 4.1 and 4.2 establish that the opposing forces
generated by the cockroach support tripod provide direc-
tional stability, and that they may even be necessary for
it (Fig. 13). We now use the model results to argue that
such opposing forces confer an additional advantage on
sprawled-posture animals: they tend to minimize overall
joint moments.

Historically, running with an upright posture has been
thought to be more effective, in part because verti-
cally directed ground reaction forces are aligned along
the limb, thereby minimizing joint moments. Vertically
directed ground reaction forces in sprawled-posture ani-
mals would necessarily result in large joint moments, par-
ticularly at the “hip”. However, sprawled-posture animals
do not generate purely vertical ground reaction forces
during running: legs push against each another, approx-
imately aligning the force vector along the limbs as in
upright-posture runners (Full 1993). Thus, fore–aft and
lateral ground forces that account for most of the mechan-
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Fig. 15. Individual moments generated by the legs of the left support
tripod, (a) at center of mass (COM) and (b) at coxa–femur joint: front
leg solid, middle leg dashed, hind leg chain dashed. c Total moments
at COM (solid) and coxa–femur joint (dashed)

ical work generated during locomotion can reduce total
muscle force by directing ground reaction forces toward
joint centers of rotation. Locomotion in sprawled-posture
animals such as insects, centipedes, and lizards does not
necessarily result in large moments at joints or large mus-
cle forces. This is consistent with the finding that minimum
metabolic costs of locomotion in species that differ in pos-
ture can be similar (Full 1989).

Our model reveals that fore and hind legs require small
moments (di magnitudes) to produce the ground reac-
tion forces observed in running cockroaches (Fig. 6).
Moments generated by middle legs are nearly twice
as large, but comparison with measurements from the
coxa–femur joint in cockroaches reveals that even these
larger moments are less than 10% of the maximum
moments that animals can produce (Full and Ahn
1995). However, minimization of joint moments near the
body does not imply that ground reaction forces are
directed through all joint centers of rotation: bent mul-
tisegment legs make this impossible. Full et al. (1991)
tested the hypothesis that deviations from the minimum
moments in running cockroaches could be explained by
considering the minimization of the summed muscle forces
in several legs. Calculations demonstrated that measured
ground reaction forces in the sagittal plane were within
12% of that which would minimize muscle forces.

Plotting the present hexapedal model’s individual leg
moments about the approximate position of coxa–femur
joints and the COM reveals that the legs of each tripod pro-
duce moment patterns that sum to rotate the body with

little cancellation: indeed, the front and rear leg COM
moments oppose the middle one only in the third quar-
ter of the stance phase (Fig. 15(a)). This also reveals why
d2, the middle leg moment arm, moves in the opposite
direction to the front and hind moment arms (Fig. 6): to
produce similar COM moments from all three support
legs. Hence the inwardly directed opposing leg forces do
not generate substantial opposing moments, and, given
that nonzero net COM moments are observed, they are
thereby produced in an efficient manner.

To further investigate the role of moments, a study was
conducted in which the “design” hip position inputs di(t)
used in the fourth protocol of Fig. 11 were perturbed in a
manner that preserves the net COM moments but changes
individual leg moments. Specifically, we shifted d1, d4 (the
front pivot positions) forward on the body by 0.1–0.3 cm
and d3, d6 (back pivot positions) backward by 0.1–0.3 cm,
leaving the middle pivot positions d2, d5 alone. This signifi-
cantly increased front leg coxa–femur moments, slightly
increased rear leg moments, and led to substantial cancel-
lation of opposing front and rear moments. More signifi-
cantly, all the resulting perturbed gaits had one eigenvalue
of magnitude greater than one, and so were unstable (data
not shown). Leg actions that minimize individual coxa–
femur moments also appear necessary for passive stability!

We may ask why nonzero moments are necessary
at all for straight running or, equivalently, why ani-
mals exhibit appreciable yawing motions. If all model
hips are fixed at the COM (di ≡ 0), then rotation
decouples completely and moments are zero, and in
principle nonzero moments could be produced by
reflexive feedback only when needed to correct yaw
perturbations (recall the comments at the end of
Sect. 3.2). Rapid force sensor (campaniform sensilla)
reflexes (Höltje and Hustert 2003) imply that this is possi-
ble in stereotyped movements, but the delays in controlled
muscle force generation, estimated at 25–30 ms in Jindrich
and Full (2002), suggest that it may be harder to pro-
duce precise control “on demand” within a step. More-
over, Jindrich and Full (2002) discovered that the moments
necessary to produce large turns in insects required only
minor alterations in forces generated in stable, straight-
ahead locomotion (Jindrich and Full 1999), and we have
confirmed that this is also possible via smalld-variations in
the LLS model (Schmitt and Holmes 2000b). Hence, later-
ally opposing leg forces, generally perceived to be ineffec-
tive, may actually work synergistically to enhance stability
and maneuverability. Perhaps the energetic costs of loco-
motion balance the stability and increases in muscle force
production.

5 Conclusions

The Kubow and Full (1999), Schmitt and Holmes
(2000a,b), and Schmitt et al. (2002) models represent
opposite extremes; in Kubow and Full (1999), foot forces
are completely prescribed and do not respond to pertur-
bations; in Schmitt and Holmes (2000a,b); Schmitt et al.
(2002), they are entirely determined by the body motions,
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and hence respond immediately to perturbations. Force
measurements in response to momentum perturbations
show changes in lateral velocity of 0.2 ms−1 occurring
within 15 ms (Jindrich and Full 2002, Fig. 3), correspond-
ing to forces of 0.3–0.4 N, two orders of magnitude greater
than the lateral forces typical of unperturbed running
(Fig. 8). At the same time, changes in the number and phas-
ing of motoneuron action potentials directly affect muscle
forces (Full et al. 1998). Hence, neither purely prescribed
nor purely passive forces adequately represent the situa-
tion. Along with Schmitt and Holmes (2003), the present
paper develops a model in which, as in the insect, forces
are partially prescribed in a feedforward manner and par-
tially determined by mechanical (preflex) feedback due to
interaction with the environment. As we have noted, this
is a step toward an integrated neuromechanical model of
a behaving animal.

The dynamics of the hexapedal lateral leg spring model
developed here compares well with insect body dynamics
(Fig. 8). Furthermore, the model exhibits stable trajecto-
ries for a range of velocities typical of the animal (Figs. 11
and 14). Four cases were considered. In the first, the
desired forward speed Vdes alone changes, and we retain
constant leg cycle frequency, so that faster running is
achieved by taking longer strides. In the second, leg cy-
cle frequency � increases linearly, and in the third it in-
creases up to a transition speed, after which it remains
constant. In the fourth case, foot touchdown positions bj

are also adjusted in a manner suggested by insect data, to
increase stride length and maintain approximate symme-
try by keeping the COM near the center of the support
triangle at midstride.

The latter two protocols exhibit improved stability
characteristics, due jointly to the more natural frequency
and foot placement variations, but such hypotheses
cannot be tested in detail until precise relationships
between directly measureable insect and model param-
eters are known over the whole speed range. More-
over, earlier studies (Schmitt and Holmes 2001; Schmitt
et al. 2002) and numerical simulations of the current
model not reported here reveal that gait stability de-
pends on several parameters in addition to speed, stride
frequency, and foot placement points; for example,
moment of inertia I and spring constant k play impor-
tant roles. Future work will require development of more
realistic leg-muscle models and more exhaustive parame-
ter studies, perhaps using nondimensional quantities and
scaling relations, as in Schmitt and Holmes (2001).

The present model further weakens the hypothesis that
sprawled-posture, polypedal locomotion is less effective
than upright posture running with fewer legs. Sprawled-
posture runners are stable in both the sagittal and
horizontal planes over a range of speeds. Stability with
differential leg function does not appear to be compro-
mised by large joint moments during running because leg
ground reaction forces are aligned along the leg directed
toward the COM, and moments due to individual legs
cooperate to produce the net turning moments that sus-
tain the insect’s stable weaving trajectory (Fig. 15). Legs
radiating out in all directions with the capability of gen-

erating large moments may allow very rapid turning and
other extraordinary maneuvers.
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Appendix

Computational and analytical details

Numerical approximation of eigenvalues A forward-differ-
ence algorithm was used to numerically calculate eigen-
values of the Jacobian of the Poincaré return map (15).
First a fixed point of the map

P(x∗)=x∗ (16)

was approximated using a nonlinear least-squares algo-
rithm. Then each of the state variable values x= (v, δ, θ,ω)
were in turn perturbed by a small amount �xj . For a per-
turbation in the j th element of the state vector, the j th
column of the Jacobian of the map is approximated by the
following equation:

�P
�xj

≈ P(x∗ +�xj ej )−P(x∗)
�xj

. (17)

We found that requiring errors less than 10−4 sufficed
in the nonlinear least-squares scheme implemented in
Matlab by the fsolve function, using its medium-scale,
trust-region dogleg method (a variant of the Powell dogleg
method, Powell 1970). The numerical routine was checked
using a damped harmonic oscillator with a known analytic
solution: agreement was excellent.

Touchdown protocol details for high-speed range

For the final set of variable-speed data presented in col-
umn IV of Fig 11, we adjusted foot touchdown positions
for the left tripod for Vdes >0.25 m sec−1 as follows (right
tripod touchdown positions follow via reflection about the
body axis):

b1,e1(Vdes) = b1,e1 +0.02(Vdes −0.25) ,

b1,e2(Vdes) = b1,e2 +0.04(Vdes −0.25) ,

b2,e1(Vdes) = b2,e1 −0.02(Vdes −0.25) ,

b2,e2(Vdes) = b2,e2 +0.04(Vdes −0.25) ,

b3,e1(Vdes) = b3,e1 −0.02(Vdes −0.25) ,

b3,e2(Vdes) = b3,e2 +0.03(Vdes −0.25) .

Here bj denote the nominal touchdown vectors specified in
Table 1, and bj (Vdes)denote the modified placements. Note
that dependence on Vdes is linear and that legs are extended
and swung further forward as Vdes increases. This parallels
the decrease in touchdown angle β and increase in relaxed
leg length l adopted in (Schmitt et al. 2002, Sect. 4.4), and,
as noted in the text, it effectively limits leg-length increases
to within 50% above those at preferred speed.
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