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Mechanical work in terrestrial
locomotion

R. BLICKHAN and ROBERT J. FULL

1. Introduction: average versus oscillatory work

The amount of metabolic energy required to travel a given distance by an
animal using legged, terrestrial locomotion exceeds the costs of swimming by
a factor of more than eight and of flying by more than a factor of four (1).
Since terrestrial locomotion is expensive, it is reasonable to assume that the
relatively high metabolic power input should generate a considerable, and
therefore easily measurable, amount of mechanical power output. Surprisingly,
a simple and direct link between metabolic and mechanical power during
terrestrial locomotion has proved to be elusive (2). Fortunately, the challenge
of investigating the link has been rewarding because these studies have and
will continue to increase our knowledge of musculoskeletal function for all
modes of locomotion.

During walking or running on the horizontal, a body normally returns to
the same total energy level once per stride (a stride being one complete cycle
of leg movements). If an animal is moving straight ahead at a constant
average speed, then the average kinetic (E,;,) and potential energy (Epm)
remain constant from stride to stride. The average mechanical energy of
the system, the sum of potential and kinetic energy per stride, is there-
fore unchanged (assuming drag is negligible). However, by this measure,
efficiency defined as mechanical power output divided by metabolic energy
input, would be zero because no total mechanical work is done. When walking
uphill, muscular work is necessary to increase the total potential energy from
step to step and efficiency is positive (3). Yet, according to this definition,
walking or running downhill decreases total potential energy and results in a
negative efficiency. Obviously, a consideration of average mechanical energy
alone is insufficient to explain how muscles generate movement on land.

The zero or negative work paradox can be explained partially by consider-
ing fluctuations or oscillations of mechanical energy within each stride as
opposed to average energy changes (4). During a single stride, a body’s centre
of mass accelerates and decelerates in at least the horizontal direction, as well
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as changes potential energy by rising and falling. These changes in potential
and kinetic energy increase the instantaneous mechanical energy. Transient
increases in mechanical energy during a stride can be generated from muscu-
lar work and, therefore, should be considered in estimates of the mechanical
power of terrestrial locomotion.

Cavagna and others (5, 6, 7) have estimated mechanical energy output
from fluctuations in the energy of a human’s or animal’s centre of mass. By
using a force platform, they determined the extent to which energy of the
centre of mass changed due to the interaction with the environment (that is,
due to a leg pushing against the ground and the ground exerting a force on the
centre of mass). The mechanical work done by a body on the environment is
termed external work. External work has been used with respect to the lifting
and acceleration of a body’s centre of mass during a stride, but more com-
monly refers to the lifting of weights, the pedalling of a bicycle ergometer or
the work used to lift a body’s centre of mass uphill.

Analysing the dynamics of the centre of mass has been invaluable in
developing general models of terrestrial locomotion. However, as Winter (8)
points out, the external work of the centre of mass may not represent the sum
of all the energy changes in each segment of the body. He suggests that
internal work, changes in the energy of segments relative to the centre of
mass, should be summed with external work to estimate mechanical energy
output. Even the general method of summing segment energies tends to
underestimate energy generation and absorption at different joints (9). The
calculation of joint and muscle work or muscle power takes into account
energy generation, absorption and transfer at each joint and can provide a
better estimate of muscle work (10).

In the sections that follow, we show the methods used to calculate external
and internal energy oscillations as well as joint and muscle work or power. In
the remaining part of the chapter, we evaluate these methods and discuss how
energy exchange and transfer, elastic strain energy storage, co-contraction of
antagonistic muscles and the cost of isometric and energy absorbing muscular
contractions can significantly affect the link between musculoskeletal function
and the mechanical energy output of terrestrial locomotion.

2. Measurement of external work

During straight ahead locomotion at constant, average speed, the fluctuations
of external ground reaction forces result in instantaneous work done on the
body’s centre of mass (CM) and generate corresponding fluctuations of total,
external mechanical energy. The external forces generated by the musculo-
skeletal system to accelerate and decelerate the body’s CM can be measured
using force platforms or force platform tracks (ref. 11; and see Chapter 3.2).
The velocities and displacements of the CM can be obtained by successive
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integration of the forces. These can be used in turn to calculate the changes in
kinetic and potential energy of the CM.

2.1 Calculation of energy fluctuations of the CM from
ground reaction force measurements '

For an animal of known weight, the three components of the acceleration of
the CM can be obtained by dividing the corresponding forces by the animal’s
mass.

The horizontal (;) and lateral (;) force (F) yield acceleration such that:

a, = Fi/m; a, = Fo/m (1)

where m is mass of the animal and a is horizontal or lateral acceleration of
the CM. The vertical (3) component of the CM acceleration equals:

a3 = (F3 — mg)/m 2)

where g = 9.81 ms™%. Weight can be obtained by averaging the vertical force
for an integral number of strides. This calculated weight should correspond to
the animal’s weight determined from a scale.

The velocity fluctuations of the CM (v) are calculated by integration of each
acceleration component determined from the force platform:

v{f) = [/, a; (1) + const; 3)

where i equals 1, 2, 3; ris time; and const, is the animal’s average velocity in
the ith direction.

The integration constants must be determined from the boundary con-
ditions of the system. The average height of an animal’s centre of mass varies
little from stride to stride. Thus, the average vertical velocity (v3) after an
integral number of strides is zero, a is the average lateral velocity (v7) if the
animal moves in a straight line. The average horizontal speed (v3) has to be
measured separately. This can be done by measuring the time that it takes an
animal to cover a given distance. If the track is long enough reasonable
estimates can be obtained by just measuring the time from the first step on
and off the forceplate track of known length (error is about 10%; ref. 12).

Speed can also be calculated from the time an animal needs to cover the-

distance between two photocells (13). However, errors can result in this
estimate if different parts of the animal’s body cross each of the two photo-
cells. Also the distance between the photocells usually does not consist of an
integral number of strides.

Changes in the kinetic energy of the CM (E,;,) can be calculated from the
instantaneous velocities of the animal’s CM:

Eyin (1) = %Vi(t)z- 4)
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Changes in potential energy (Epor) of the CM can be calculated from the
vertical displacement (s3), which is obtained in turn by integration of the
changes of the vertical velocity of the centre of mass:

S3(f) = j;v:;(t) + const. : (5)

The corresponding integration constant must be zero, since the average
vertical displacement over an integral number of strides is unchanged.
Changes in the potential energy of the animal’s CM equals:

Epol(t) = mg s5(1). 6

The total external energy of the CM (E,y,) is calculated from the sum of
kinetic and potential energy components:

3
Eex(t) = Epot) + 5 2 vi(0)?. ()

Minimum estimates of mechanical work have been calculated by summing
the positive increments of total external energy (+AE.,,) for each stride (7,
12, 14, 15). However, see Section 5.1 for the assumptions of this calculation,
since other energy components may not be accounted for by the CM
approach.

2.2 Measurement of external forces of the CM

2.2.1 Design features of force platform for mechanical work
measurements

Force platforms are most often used to measure the ground reaction forces
required to calculate the energetic fluctuations of the CM (see Chapter 3.2).
Ground reaction forces must be measured in at least the vertical and horizon-
tal direction. In many lower vertebrates and arthropods, the lateral force
component is also essential.

If the mechanics of constant, average speed locomotion are desired, then
some criteria must be set to eliminate trials in which the animal is generating
net accelerations or decelerations. Typically, this is determined from the sums
of positive and negative changes in velocity. Trials in which the difference of
these sums is less than 15-25% have been accepted as a constant, average
speed (12, 14). To judge whether animals are moving without net accelera-
tions or decelerations, the force platform must be long enough to measure at
least one complete stride with the whole animal on the platform. This re-
quires a long force platform. To keep the resonant frequency of the force
platform significantly above the highest frequencies of the investigated force
signal, the platforms must be stiff and of low weight. On the other hand, the
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Figure 1. Experimental set-up. The signals of each force component in the corners of the
platform are amplified and filtered. Subsequently these signals are digitized, summed for
all corners of the platform and all platforms, filtered and integrated. Photocells can be
used to provide an estimate of speed. Two high-speed cameras can collect information on
the localization of body segments in three-dimensional space. After transformation of the
respective coordinates, speed and angular velocities of the segments can be obtained by
differentiation.

sensitivity of the plate is proportional to its compliance. Cavagna (11) and
Heglund (13) solved this problem by building a track of small force platforms
placed in series (Figure I). The independent signals from the platforms are
summed to calculate total force. The disadvantage of this design is that it
becomes increasingly difficult to build and to maintain a number of platforms.
By using semiconductor strain-gauges at the force-transducing support arms
of the platform, stiffness of the platforms can be increased, and the number of
platforms reduced (12).

2.2.2 Data processing

Data can be processed by analogue (11) or digital techniques (16). The speed
and capacity of computers and their widespread use make the latter the more
promising option. In digital processing, flexibility is guaranteed and the original
data can be used for other analyses.

One problem that arises from the collection of force data is baseline drift.
High speed taping for kinematic analysis requires bright illumination which in
turn heats up the force platform components, causing drift in the voltage
output of the electronic circuits. The drift in the baseline of the signal can be
corrected by sampling a series of points before and after the time that the
animal steps on the platform. These values can be used to provide a linear
approximation of the baseline drift which can then be removed at any point in
time during the recording of force (16).
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Another major difficulty with the force signals is noise due to ‘ringing’ of
the platform associated with its natural frequency. A variety of filters are
available to reduce the ‘ringing’ noise in the force data (9, 17). Initial ana.
logue filtering prior to digital processing may be necessary to avoid aliasing,
Problems resulting from phase shifts using analogue filters may be consider-
able (see Chapter 3, Section 3.4), and it is advisable to use cut-off frequencies
as close to the sampling frequency as possible. For further processing, digital
filtering is often preferable because original data can be passed through a
variety of filters to avoid distortion. Whatever the digital filter selected, it
should be symmetrical to avoid phase shifts, it should be steep at the cut-off
frequency, and the sum of the coefficients should be one, in order to maintain
signal amplitude constant.

2.2.3 Signal integration

The calculation of potential and kinetic energy requires integration of the
force data. Each integration process suppresses the high-frequency com-
ponents and thus, results in effective filtering of the velocity and displacement
data. As stated by Cavagna (11), analogue integration of the force data and
the calculation of the velocities can be advantageous as ‘the integration
process abolishes the interference caused by the vibrations of the plate’.
Simple analogue circuits for integration can be built easily (see ref. 13, and
ref. 17, p. 121), but there are a number of pitfalls which diminish the apparent
advantage of analogue integration. In particular, the signal must be extremely
stable and any offset, including errors in the subtracted weight, must be very
small as they are integrated twice to determine the changes in potential
energy.

Once again, digital solutions to noise reduction and integration are prefer-
able. The simplest approach to integration is the trapezoidal rule. Here, each
area between successive data points is approximated by a trapezoid:

Sima S At = foampies 3 [Y(0) + 25(1) + 2y(3)
+ oo 4 29N = 1) + y(N)] ®

where N is the sample size and fsampie is the sampling frequency. This repre-
sents a fast approach which can even be implemented with macros linked in
electronic spreadsheets (12). The error from this calculation can be consider-
able, but is reduced by using a high sample frequency and/or by applying

more elaborate integration techniques (for example, Romberg’s method in
ref. 18, p. 287).

2.3 Calibration and check of hardware, electronic
circuits, and software

To test the operation of all circuits and software used to calculate the energy
changes of the centre of mass, a sample test should be performed that
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provides a direct comparison between experiment and theory. A convenient
tool for this purpose is a pendulum of appropriate mass placed on the force
plate (Figure 2; ref. 12). The forces exerted by the pendulum are generated by
the swinging mass and transmitted by the string to the support of the pendulum
and thus to the platform. If 8 describes the angular deflection of the pendulum
(length, /, and mass, m), then the force in the string (Fyering) is the sum of the
centrifugal force and the component of gravity in the direction of the string:

Fyring = m 6% [ + m g cos 6. 9)
For the horizontal and vertical component of the ground reaction force:
Fy = $in 8 Fying; F, = cos 8 Foving: (10)
For small displacements 6 is a harmonic function of r:
6 = 6 sin wt (11)

with ©? =

~ 109

For small angles, equation (9) can be integrated analytically to obtain veloci-
ties, displacements, and energies; for large angular deflections numerical
integration is necessary. This results in theoretical values which can be com-
pared with experimental data. Representative experimental calibration
curves for acceleration, velocity, and energy fluctuations of a pendulum
are shown in Figure 2B. (The pendulum should show near 100% energy
recovery.)

3. Measurement of internal work

Body appendages can move relative to one another in such a way that the
body’s CM is not affected. Nevertheless, muscle force and thus metabolic
€nergy are necessary to power these movements. Internal work relative to the
CM (19) and total work (8) have been estimated by summing the energy
changes from each segment (that is, in a linked segment model) over an
integral number of strides. This technique of using kinematic data or a
combination of kinematic and external force data is commonly referred to as
‘inverse dynamics’. Joint moments and joint reaction forces are estimated
from external movements and forces. This is the reverse order of what
happens in the body, since muscles actually produce the joint moments and
forces which result in the movement of segments.

3.1 From kinematics to internal work

The body of an animal can be approximated by a series of linked segments.
The location of the joint—or, more accurately, the instantaneous axis of
rotation and the position of the CM must be determined for each body
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Figure 2. A: Pendulum to test force plate and data processing techniques. The estimates
are obtained by integration of the b asic equations of motion (see text) and can be
compared with experimental results. B: Representative experimental calibration curves
obtained from a pendulum swinging on the force plate. (Deflection: 30 degrees; results
are given as dimensionless quantities).

segment relative to the segment markers used in video taping (see below).
The movement of each segment can then be described by a translation of the
segment’s CM and a rotation around the CM (Figure 3). The inertia of each
segment is proportional to its mass for translational displacements and to its
moment of inertia for rotational movements.

Changes in potential energy (Epo ) can be calculated from the vertical
translation or displacement (s3 ;) of the centre of gravity of each body seg-
ment (k) where:

Epor i(f) = my g 53.4(0). (12)

By differentiation of the displacements of the CM of the individual segments,
changes in their velocity (v; ;) and thus the changes in translational kinetic
energy (Eyn,) can be calculated:

m

By g () = Tk vi(t). (13)
By differentiating the angle of rotation (8) with respect to time, the rotational
velocity (w) of each segment can be calculated. Provided that the three-

dimensional moments of inertia (I) of the segment are available (see Section
3.2 below), the rotational energy of the segment (Ey;, ;) can be determined:

2 i (1) Ty @7a) (14)

B =

Ekin,r,i.k(‘) =

where i (= 1, 2, 3) and j denotes the axes of the Cartesian coordinate system.
If the rotation takes place only around the x-axis (i = j = 1), then the
rotational energy can be written:

Epinras(®) = Vo014 Ly 010 = Y2 Ly g 03 4 (14a)

If the actual rotation has two components (for example, x and y; i, j = 1, 2),
then the rotational energy becomes:

Einrax(t) = Y2 (014 i @14 + 014 Iz i 0] (14b)

"‘hcrc I, denotes the element of the tensor of inertia that considers the
influence of the movement around y (j = 2) on the first energy component (i=1).

If the movement is planar and the segments have a parallel plane of symmetry,
cquution (14) simplifies to:

Eyinris) = Y2 L 07 4 (2). (15)
83



Mechanical work in terrestrial locomotion

Time:t=1t_+ At Time:t=t,

A T, m,m,TTmTmTrTET eEYEY

Figure 3. Notation for the calculation of internal energy. The leg of the animal is moving
from right to left in the yz-plane. Between two frames (time interval = At) the CM of the kth
segment (m, = mass; /;; = moment of inertia for rotation around the CM in the yz-plane)
is translated by As, (Ay,, Az,) towards the position marked by the dashed line and rotated
by A6, from the dashed line to its final position. From the change in position, the velocity
of translation (v, = As, At™") and the angular velocity (w, = A6, At™") can be determined.
Velocity changes allow calculation of kinetic energy. Indices of angular changes denote
the axis of rotation which is perpendicular to the instantaneous plane of movement (for
example, parallel to x = x,).

The mechanical energy contributed by each moving segment (E,), then, is
the sum of the respective kinetic (translational and rotational) and potential
energies at each instant in time:

Ei(t) = Eyin () + Epo i(t). (16)
Considering one plane (i,f) and planar symmetry of the body this yields:
E, = Yamy (v + Vf,k) + % Lip @iy + my g ss. (17)
The total internal energy (E;,,) of the moving animal can be calculated by
adding the contributions from every segment at each instant in time:
Ein (1) = 2 E(0). (18)

Once again, there are numerous ways to calculate internal energy from the
same data set depending on the assumptions made about the linked system
(see Sections 5.1 and 5.2).

3.2 Determination of the CM and moment of inertia of
body segments

Whereas the instantaneous axis of rotation can be determined from kinematic
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data, the CM and the moment of inertia must be determined for each segment
independently.

The simplest approach used to determine the CM is to freeze and cut the
body into segments. The CM is then determined by photographing or
videotaping each segment as it is suspended from various axes. The CM is
marked by the common crossing of all vertical lines drawn from the respective
points of suspension. The CM of a multi-segmented system is (9):

1
-}\? - My Sk (19)

where s is the position of the CM of a multi-segmented body, s;, is the
position of the CM of a segment (k), m; is the mass of a segment (k), n is total
number of segments and M is total mass = 3,_, m,.

A similar segmental approach can be used to determine the moment of
inertia. However, it is important to note that the moment of inertia of a
segment rotating in three-dimensional space can be complicated to deter-
mine. Being three-dimensional, the moment of inertia is a tensor. It is
characterized by three quantities (/;,, [5,, and Is3), if the principal axes of the

tensor are known. Otherwise, six quantities are needed for a complete de-
scription:

Ill —112 _113
I= —121 122 —Iz3 (20)
_131 _132 ]33

where Ir] = Ij,'.

If the body under investigation has no symmetry and the main axis of the
moment of inertia are not known, then the six independent experimental
estimates are necessary to quantify this tensor using a linear system of equations
and transformation of coordinates. After transformation of the coordinate

system to the principal axes of the segment, the tensor contains only the three
diagonal elements:

Ti by 0
I=[{0 I, 0 (21)
W ol Lig

Frequently, the segment can be approximated reasonably by a body with two
perpendicular planes of symmetry with the principal axes of the tensor per-
pendicular to these planes (Figure 4).

Modern tomographic methods allow a precise three-dimensional estimate
of the geometry of body segments (Briiggemann, pers. comm.). Even the
position of more dense skeletal structures can be determined. These tech-
niques are expensive, but have the advantage of not requiring the sacrifice of
an animal. If the density and the shape of segments of the specimens are
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Figure 4. In a three-dimensional representation the tensor of the moment of inertia can be
visualized by an ellipsoid. The lengths of the principle axes of this ellipsoid to /14, /2, /2y,
respectively, and are sufficient to characterize inertia of any three dimensional body. The
axes of the segment-fixed coordinate system (X,Y,Z) are frequently chosen to lie parallel
to the axes of rotation defined by the construction of the joint. If the orientation of the
segment-fixed system is different from the orientation of the principle axes and the
segment does not rotate around one of the main axes, then the tensor must be rotated
into the segment-fixed system and six quantities are necessary to describe inertia.

known, then the moment of inertia can be calculated by computing the
corresponding volume (V) integrals of each of the tissues in the body segment:

Li=py S (x;z + x%) dv, Ix'j =pyf XiX; dv (22)

where x;;,; are the Cartesian coordinates of points within the volume of the
tissue, the origin being located at the CM of the segment. Density is repre-
sented by p; m = pV; i,jl = 1,2,3; and i # j # 1 for example:

In=pyf(x3+x})dVand I,; = Pv § X1 x5 dV. (22a)

In many cases complicated shapes of segments can be approximated by a

stack of geometrical elements () such as cylinders, truncated cones, etc.,

with known moments of inertia. The moment of inertia of the whole segment
relative to rotations around the CM can be calculated by:

It’i = g‘[lﬁ'.m & my, (xj.m2 + xl,mz)] (23)

]:}' = §[Ix}',m + mg, (xl'.m xj,m)] (24)
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where i,j,l = 1,2,3 and i # j # [ (see equation (22)) x; ,, is the difference in the
coordinates of the CM of the total segment and the CM of elements of the
stack (20).

Experimentally, the moment of inertia around any axis of rotation can be
determined by letting the object oscillate as a physical pendulum:

I=szcg

4 2 (25)

where 7 is the period of the pendulum, m is the mass of the segment, and c is
the distance from the axis of rotation to the CM.

Often, however, the segment of interest rotates about an axis other than its
CM. The moment of inertia around this axis (/) can be calculated by applying
the parallel axis theorem:

1=1I,+ mc (26)

where I is the moment of inertia around the CM (as determined above).

3.3 Data processing

Cinematographic techniques and kinematic analyses are described in detail
elsewhere in this volume (see Chapter 3). In general, because the determination
of segmental energies requires the calculation of velocities from displacement
data, the application of fast and highly accurate cinematographic techniques
are a necessity. The major problems encountered include digitizing error,
unwanted movement of skin markers with respect to underlying skeletal
structures and inadequate sampling rate.

4. Calculation of joint and muscle work and power

Muscles can both generate and absorb energy. Muscles that generate energy do
positive work, whereas ‘negative’ work is ‘done on’ muscles that absorb energy.
If both of these functions are important to the musculoskeletal system that is to
be analysed, then in principle energy changes can be calculated from the net
moments or torques (7') developed at each joint (k; see also Chapter 3; refs. 3
and 21). The rate of work done by or to muscles varies with time. Instantaneous
muscle power at a joint (Pp,; ref. 22) is the product of the net moment generated
by the muscles at each joint (T;) and joint angular velocity (w,):

Po =T, o 27

The calculation of net joint moments requires combined ground reaction force
data obtained from a force platform and kinematic data from high-speed taping
(Chapter 3). Ground reaction forces, segment masses, and moments of inertia
are used in a free body diagram analysis to calculate the net moment at the joint
(depending on the importance of the inertial component; Chapter 3, Section 4).
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Mechanical work in terrestrial locomotion

Joint angular velocity at any instant is obtained directly from the kinematic
analysis (Chapter 3, Section 3.5).

Total energy (Etor) OF work done is determined by integrating Pr, Over an
integral number of strides for each joint:

Ei = 2 |Ti 0kl dt. (28)

In these calculationsitis essential to be consistentin defining the direction of the
joint moment (for example, counter-clockwise moments are positive, whereas
clockwise ones are negative). To estimate the total positive and negative work
done, it is important to sum both negative (energy absorbing) and positive
(energy producing) areas of the P, versus time function separately (this is the

reason for the absolute value sign in equation (28), but see Section 5.2 below).

5. Evaluation of techniques used to examine the
mechanical work in terrestrial locomotion

5.1 Energy exchange within segments and transfer
between segments

In his initial attempts tO estimate the work done during terrestrial loco-
motion, Fenn (4) calculated the increases in potential and kinetic energy of a
body’s segments. Summation of the increases in segment energy, however,
can lead to an overestimate of the work done, if energy exchanges within and
between segments are significant. Consider a limb that functions as an ideal
pendulum. Once energy is put into the system, no additional energy input
would be required to swing the limb, because all the potential energy would
be exchanged with kinetic energy. Artificially high values of mechanical work
(termed ‘pseudo-wor ") would result, if the potential energy increases were
simply added to kinetic energy increases.

Cavagna and others 5, 6, 7) demonstrated the importance of energy
exchange and recovery during walking by calculating the energy fluctuations
of the CM from ground reaction forces (that is, external work or CM
approach). During walking in bipeds, quadrupeds, and even eight-legged
crabs, potential and kinetic energies of the CM are out of phase by about 180
degrees much like an egg rolling end over end or an inverted pendulum
(Figure 5; refs. 7, 14, 16). Energy lost in the kinetic form as the body slows
can be recovered and used to raise the body and increase potential energy.
Therefore, if the potential and kinetic energy of an animal using a pendulum-
like energy exchange mechanism are summed at each instant, then the
fluctuations of total, external energy (AEext) will be reduced. The possible
degree of energy exchange or recovery can be quantified as (7):

1AEpOl\ + |AEkinl - IAEexJ
IAEPOI‘ + |AEkiﬂ|
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Figure 5. Example: Fluctuations of external energy in the ghost crab. During walking
potential and kinetic energies are out of phase allowing for energy exchange. During
running both energies are in phase energy exchange is small but energy storage is
facilitated. (Adapted from ref. 16.)

where AE, and AE,;, are the changes in potential and kinetic energy,
respectively. Recovery would be 100% for an ideal pendulum. Surprisingly,
recovery in large mammals during walking can reach 70% (7).

In contrast to walking, potential and kinetic energy fluctuations of a body’s
CM have been shown to be in phase during running in bipeds, quadrupedal
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mammals, crabs, and insects (7, 14, 23). Potential and kinetic energy fluctua-
tions of the centre of mass add to result in large changes in the total, external
energy (Fig. 5; ref. 7). The system operates similar to a spring-mass system
and pendulum-like energy recovery decreases. However, potential and kinetic
energy can be stored temporarily as elastic strain energy in tendons upon
landing and then returned to the centre of mass upon take-off. Elastic strain
energy storage has proven to play an important role in large mammals, such
as the kangaroo, where as much as 50% of the mechanical energy can be
stored and returned (24).

Analysing the energy fluctuations of the CM has lead to the development of
spring—mass models of running (25, 26) as well as inverted pendulum models
of walking (5, 7, 27). Although the CM approach has been invaluable in
designing simple models of terrestrial locomotion, there are several con-
ditions in which mechanical work estimates obtained by this method could
differ significantly from actual work output:

e the body’s CM may not refiect all the changes in energy of each segment (8)

e simultaneous increases and decreases in the energy of segments moving
reciprocally and relative to the movement of the CM are not measured

e energy changes in the flight or aerial phase are not included in the estimation

e the CM approach does not account for energy generation and absorption at
each joint (9)

Energy exchange is possible, not only for the CM, but for each body
segment (8). Moreover, energy can be transferred between adjacent seg-
ments (ref. 4; ‘whip effect’). Winter’s (8) estimation of total body work (that
is, internal work) includes the possibility of energy exchange within segments
and between adjacent segments. Estimates of internal work will vary depend-
ing upon the assumptions made concerning energy exchange.

In general, the lowest estimates of work are obtained when complete
energy exchange is hypothesized. If complete exchange is assumed within a
segment, then the energy of a segment can be calculated by simply summing
the energies (that is, potential, kinetic, and rotational) at each instant in time.
If complete exchange is assumed between adjacent segments, then the energy
of the body can be calculated by summing the instantaneous segment energies
as shown above. Internal work will be the greatest when no energy exchange
is hypothesized (4, 28). To calculate internal work with no exchange, the
absolute value of the energy changes over time is summed.

Intermediate values of internal work result from assumptions of partial
energy exchange. In a comparative study of terrestrial locomotion, Fedak et
al. (19) calculated total internal energy (taken to be primarily kinetic energy)
by assuming exchange within and between limb segments, but not between
the limbs and body or other limbs. In other words, these workers assumed no
exchange between internal work done by the limbs relative to the CM and
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external work done on the CM. However, energy exchange between internal
and external energy can occur during the stance phase. Consider a stick
rotating around an axis through it’s centre of gravity. If such a stick touches
the ground, then part of its rotational energy is transferred into kinetic energy
of the CM, which can be easily measured from the generated ground reaction
forces. This type of interaction is used (in reverse) by gymnasts to somersault
and simple summation of the positive increments of the fluctuations of internal
and external energy would lead to an over-estimation of internal work.
Heglund et al. (29) determined the maximum error due to neglected exchange
during steady locomotion to be within about 30% of total mechanical energy
(such as for a chipmunk and a dog). For large animals, such as a horse, values
of internal work derived from partial versus complete energy exchange could
differ by more than a factor of two. Williams and Cavanagh (30) found that
total work done during human locomotion can vary by 75% depending on the
assumptions of energy exchange.

Regardless of the assumptions made concerning energy exchange, total
work can be estimated by either summing the positive increases in total
energy over an integral number of strides or by summing the absolute value of
the changes. The former ignores the fact that absorbing mechanical energy
costs metabolic energy and gives a minimum estimate of mechanical work.
The latter estimation gives equal weight to both positive and negative work.
A third possibility, and perhaps the most reasonable approach used by in-
vestigators, is the weighting of negative work to be % to ' the energy cost of
positive work (3, 30). The decision of if or how to include negative work can
alter the total work output significantly, since an equal amount of positive and
negative work is done during constant, average-speed locomotion. Con-
sequently, it is important to make clear the assumptions adopted to compute
total energy changes of the animal’s body.

Recognition of energy exchange within and between segments has led to a
better understanding of energy conservation and an improved estimate of
total work. The total work estimate for human walking can be 16—-40%
greater than that calculated from the CM approach, if the energy changes of
each segment are included (8). Internal work can be of the same magnitude as
the external energy calculated from energy changes in the CM at the highest
sustainable speeds used by quadrupedal mammals (29). However, it is impor-
tant to note that the simple summation of segment energies at each instant
can also underestimate the generation and absorption of energy at different
joints (9). Because significant amounts of energy can be generated and
absorbed simultaneously at different joints, estimations of work in terrestrial
locomotion may be improved by examining individual joints.

5.2 Energy production and absorption

The generation and absorption of energy at a joint can be calculated from the
net joint moment and joint angular velocity (see Section 4). Instantaneous
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Figure 6. Summary power patterns at three joints during human jogging. (Adapted from
ref. 10). Each plot shows the stance phase followed by the swing phase. The end of the

stance phase is marked by the ankle’s decrease of power to zero from the large maximum
of power generation.

muscle power curves from a study on human jogging (Figure 6; ref. 10) show
the advantages of using this technique. Muscle power is positive for con-
centric (shortening) muscle contractions in which the net moment and the
joint angular velocity are of the same polarity. Energy is absorbed in eccentric
(lengthening) contractions when muscle power is negative. The hip has rela-
tively low power levels compared to the knee and ankle, probably function-
ing to stabilize the trunk. Surprisingly, the knee extensors do not generate
energy to swing the leg (that is, no positive power). Instead, the knee absorbs
energy from the swinging leg. Knee extensors absorb nearly four times as
much energy as they produce. The ankle extensors clearly generate the
majority of energy, producing three times as much positive work as the knee
extensors.

If data on energy generation and absorption at joints are combined with
energy transfer analysis, an even more complete picture of energy flow can
be drawn. Energy transfer, generation, and absorption at a joint can be
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calculated from joint reaction forces and moments on leg segments (22, 31,
32). The power between segments acting across joints (Py) is:

Py =F; -V, (30)

where F, is the reaction force vector at joint b and V, is the velocity vector of
the centre of the joint. Total power for a segment is the sum of the joint
power (Py) and the muscle power (P,; see equation (27)); the only difference
being that the muscle power is calculated using the absolute angular velocity
of the segment as opposed to the joint angular velocity. Figure 7 (from ref.
32) shows data from a power generation, absorption and exchange analysis
conducted on human walking. Joint power is shown by an arrow crossing
through the joint centre, whereas muscle power is represented by arrows
around each joint on the side where energy is flowing. During push-off at the
end of the support phase there is 533 W of power produced by the Achilles
tendon. 65W of energy is transferred to the foot (energy increase), but the
majority of the energy (469 W) flows upward from the foot through the ankle
joint. 108 W of energy continues upward throughout the knee joint, with little
participation by knee muscles. Only 23 W of energy flows into the trunk.
During weight acceptance at the beginning of ground support, 244 W flow out
from the trunk and across the knee. Nearly 164 W is absorbed by the knee
extensors and 33 W (that is, 145-108 W) is absorbed by the ankle dorsiflexors.

Al units in Watts 15

Figure 7. Mechanical power analysis of human leg during walking at (A) push-off and (B)
weight acceptance. The joint power is shown by an arrow crossing through the joint
centre. The muscle power is represented by arrows around each on the side where energy
is flowing. Power is in watts. (adapted from ref. 32.)
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Table 1. Powerflow for a single joint. For a positive (counterclockwise) angular velocity of
the proximal segment 1 (w, > 0), the power can be transferred from segment 1 to the
distal segment 2 (—) via the extensor of the joint. Complete transfer (tr.) occurs if the
angular velocities are similar. If v, > w,, energy is absorbed in the extensor (abs.), the
muscle contracts, i.e. power is generated (gen.). For w; < 0, the flow is reversed and gen.
and abs. must be exchanged in this table.

Direction Wy > wy Wy = Wy Wy < wy
Extensor 1—2 tr. and abs. complete tr. tr. and gen.
Flexor 1«2 tr. and gen. complete tr. tr. and abs.

Given the absolute angular velocity of a segment and the joint moment, it is
possible to describe the work relationships between two segments connected
by an active muscle (21, 31). Table I shows the function of muscle and the
direction of power flow for a single joint muscle performing either flexion or
extension. If one segment is fixed while the other is in motion, then the
muscle can be either generating or absorbing energy. If w; > w,, then the
muscle is lengthening and absorbing energy while transfer is taking place. If
@; < @y, then the muscle is shortening and generating energy while transfer
occurs. If w; = w, (that is, isometric contraction), then energy is only trans-
ferred by muscles from segment 1 to segment 2.

The determination of energy generation, absorption and transfer at the
joints provides considerably more information about muscle work than most
other techniques; however, even this technique cannot deal with the prob-
lems of co-contractions of antagonist muscles, isometric contractions, and
elastic strain energy storage.

6. Muscle work

Perhaps, the most difficult estimate that one can attempt is a true estimate of
a muscle’s efficiency (that is, mechanical energy output/metabolic energy
input) during terrestrial locomotion. A discussion of muscle efficiency is
outside the scope of this chapter, but we will point out the several well-known
factors that may preclude linking the above mechanical work estimates for
terrestrial locomotion directly to muscle function.

Muscles that operate nearly isometrcally generate and absorb little mechani-
cal energy. This would include muscles generating the force necessary to hold
up the body or limbs against gravity at rest. Muscles that function isometrically
can demand significant metabolic fuel consumption. In fact, considerable
evidence exists to suggest that the metabolic cost of pedestrian locomotion is
largely determined by the cost of this force production (2, 33).

Not only can individual muscles operate isometrically, but antagonistic
muscles actively contracting against one another generate no mechanical
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work and yet consume considerable metabolic energy to maintain isometric
tension. In general, the effect of co-contraction is considered to be small
during locomotion, but this requires further analysis. According to Alexander
and Vernon (24) 15% of total concentric muscle work for a kangaroo hopping
at 5.5m/sec include work done against antagonists. The degree of co-
contraction during walking in humans has been estimated to be 24% (34).

In our discussion of mechanical work, we referred to muscle force or power.
Tobemore accurate, we were describing musculotendon force or power. Elastic
strain energy storage in tendons and apodemes may significantly alter the actual
work a muscle must do if the stored energy can be returned to the segments.
Estimates of the energy saved by muscles due to elastic strain energy storage
vary considerably. In humans mechanical power output can vary by 40%
depending on the amount of elastic strain energy storage (30). Kangaroos
can save as much as 59% (24). Elastic strain energy storage in small mammals
may be more limited because they have relatively thicker tendons (35). The
calculation of tendon strain energy is found in Chapter 3, Section 4.2.

Even if one were able to estimate isometric force production, muscle co-
contraction and elastic strain energy recovery at a joint, a major difficulty
may still remain. Because more than one muscle may have a similar function
at a joint, individual muscle work estimates are often indeterminant (see
Chapter 3, Section 4). In vivo recordings of muscle force, EMG quantifica-
tion, and computational methods that minimize or assume equal stress or
power output have all been used to address this difficulty. Further study
directed toward integrating muscle function with limb performance is
obviously required and will be a promising area of research in the future.

Finally, although calculation of work in terrestrial locomotion is challenging,
it has led to a better understanding of musculoskeletal function generally. By
continuous revision and examination of assumptions, considerable progress
has been made in linking muscle function with mechanical work. For the
future, we argue that one of the strongest approaches to uncover the general
biomechanical rules of terrestrial locomotion is the comparative method which
takes advantage of natural experiments, involving animals that possess a
diversity of musculoskeletal systems and live in many different environments.
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